China’s Space and Counterspace Capabilities and Activities

Prepared for:

The U.S.-China Economic and Security Review Commission

Prepared By:

Mark Stokes, Gabriel Alvarado, Emily Weinstein, and Ian Easton

March 30, 2020

Disclaimer: This research report was prepared at the request of the U.S.-China Economic and Security Review Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 113-291. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report.
Table of Contents

KEY FINDINGS .. 3

RECOMMENDATIONS ... 4

INTRODUCTION .. 5

SECTION ONE: Drivers for Current and Future PLA Space/Counterspace Capabilities 8

- Space-Related Policy Statements... 9
- Strategic Drivers and Doctrine.. 13
- General Trends since the Late 1990s .. 15
- Space Support for Warfighting Campaigns... 16
- Space, Distant Operations, and Outlook for the Future .. 19

SECTION TWO: PLA Space/Counterspace Infrastructure: The Role of the PLA Strategic Support Force .. 21

- Space Systems Department and Subordinate Base Commands .. 23
- Space Launch Operations.. 24
- Space Situational Awareness and Control .. 26

ISR, Navigation, Communications, and Meteorological/Hydrological Capabilities 28

- Space-Based ISR ... 28
- Survey, Mapping, and Navigation .. 33
- Satellite Communications and Data Relay .. 35
- Meteorology, Oceanography, and Space Weather .. 36

Deep Space Operations .. 37

Current and Future Kinetic and Non-Kinetic Counterspace Operations 39

Training ... 41

SECTION THREE: Space/Counterspace Force Modernization ... 44

Research, Development, and Acquisition System .. 44

Space Requirements Development and Program Management 47

Defense Industry and Space Systems Engineering .. 48

- China Aerospace Science and Technology Corporation ... 48
- China Aerospace Science and Industry Corporation ... 49
- Launch Vehicle RD&A .. 49
- Solid-Fueled Propulsion Systems ... 51
- New-Generation Aerospace Flight Vehicles/Reusable Launch Vehicles 53
- Satellite Systems RD&A ... 54
- Microsatellite Programs ... 55
- Counterspace RD&A .. 57
SECTION FOUR: Military-Civil Fusion (MCF) Policies and International Cooperation 59

Military-Civil Fusion and the PRC’s Space Program .. 59

Academia and Universities’ Role in Space-Related Basic Research and RD&A 64
 Cooperation with U.S. Institutions .. 68

International Recruitment Programs .. 72

PRC Non-State-Owned Space Business .. 74
 Financing and Investment Vehicles .. 74
 Non-CASC/CASIC Launch Vehicle Companies ... 75
 Non-CASC/CASIC Satellite Companies .. 78

PRC Provision of Satellite Infrastructure, Launch Services Overseas 80
 Beidou Achieving Global Reach .. 88
 Role in Overseas Tracking Stations .. 91

Leveraging Foreign Technology and Knowhow ... 94

Role of Hong Kong-Domiciled Companies ... 97

CONCLUSIONS/RECOMMENDATIONS .. 101

APPENDIX .. 104

ACRONYMS .. 112
KEY FINDINGS

The development of the People’s Republic of China’s (PRC, China) civilian and military space programs over the last few decades has proceeded alongside the PRC’s broader rise in the international system. Questions regarding China’s capabilities and intentions in space are indubitably linked to larger geostrategic questions about China’s role in the world. Buoyed by recent successes and impressive advancements in space technology, China has emerged as a leading player in space. The implications for United States policy are numerous, and the capabilities China either currently possesses or is in the process of developing certainly pose a strategic risk to the United States’ ability to operate in the Indo-Pacific region.

Investments into space-related research and development (R&D) drive military capabilities and fill gaps in intelligence, reconnaissance, and surveillance. Space-based infrastructure is increasingly important for People’s Liberation Army (PLA) out-of-area operations. An advanced presence in space is indicative of China’s renewed status as a great power in the international system.

The advent of the PLA Strategic Support Force (PLASSF) Space Systems Department represents an organizational innovation that places all major components of China’s space program under a unified command structure, thereby increasing efficiency and efficacy. The SSF operates a vast bureaucratic apparatus that manages operations and allocates a sizable R&D budget to various aspects of its space program, all parts that move China closer toward achieving its stated goal of becoming a major space power.

China’s significant investments in space and counterspace capabilities may prove threatening to U.S. space assets and military efficacy. China’s space infrastructure is complemented by its growing capacity to deny adversarial powers access to the same space assets, as evidenced by advancements in kinetic and non-kinetic counterspace capabilities. China’s approach to modernizing its space presence includes an emphasis on military-civil fusion (MCF) and the development of dual-use technology that buoys both military and economic growth. Should China’s capabilities surpass those of the United States, the erosion of the U.S. military’s ability to contest the PLA in a potential future conflict will be at risk.

The Chinese Communist Party (CCP) is executing a long-term strategy to exploit U.S. technology, talent, and capital to build up its military space and counterspace programs and advance its strategic interests at the expense of the United States. China’s zero-sum pursuit of space superiority harms U.S. economic competitiveness, weakens U.S. military advantages, and undermines strategic stability. In short, it represents a threat to U.S. national security. Barring significant action to counter China’s space-related programs and activities of concern, it is likely that this strategic competitor’s efforts will continue to adversely affect U.S. interests.
RECOMMENDATIONS

- Congress should enact new or enhance existing laws to prohibit U.S. government departments and agencies, national labs, universities, companies, fund managers, and individual investors from supporting China’s space program and activities that are inherently military in nature.

- Congress should consider mandating and funding the production of a routinely updated, publicly available list of entities supporting China’s space programs and activities.

- Congress should consider mandating and funding public education to enhance general knowledge of China’s space programs and activities, including more targeted congressional hearings and the allocation of grants for think tank and university research programs, public conferences, public-private consultative talks, and media outreach.

- Congress should consider reviewing the budgets of the National Aeronautics and Space Administration and the United States’ leading aerospace university programs to ensure they have the education funding necessary to support young and emerging scientists and technology innovators.

- Congress should consider how funding the establishment of a potential new U.S. Space Force may better enable the military to organize, train, and equip future leaders needed to keep the United States competitive with China’s growing military space enterprise.

- Congress should pass legislation that incentivizes science, technology, engineering, and mathematics-focused high-skilled labor immigration from China (as well as other countries), including special visas earmarked for these students and a public-private effort to find them work.

- Congress should direct the U.S. Department of Defense to produce an annual unclassified report on PLA space/counterspace developments and other major players in space security. This report should assess developments, setbacks, and efficacy of these powers’ space programs. The report should also outline methodologies to assess the source of sub-kinetic attacks on U.S. space assets and potential military responses. In addition, it should assess the vulnerabilities of U.S. space/counterspace systems and how best to improve U.S. space systems’ survivability in the event of disruption or conflict.

- Congress should direct the U.S. Department of Education to produce an annual report on the proportion of doctoral graduates in space-related fields who are from China and other foreign countries and how many return home upon graduation. This information would be geared toward understanding how best to attract and retain foreign talent as well as how many students remain within the United States upon graduation.
INTRODUCTION

As the People’s Republic of China (PRC) emerges as a global space power, the international economic and security implications of its strategic modernization are mounting. Growing investments in space and counterspace have raised questions concerning Beijing’s capabilities and intentions in space. Full of confidence in the wake of success in its lunar exploration and crewed space programs, the PRC is emerging as a leading space player. What are the implications of China’s growing investment in military space technology for the United States? What is the potential to achieve disruptive breakthroughs, and what are the implications for the United States’ ability to operate in the Indo-Pacific region and beyond? What is known about China’s space and counterspace strategy and doctrine, and what organizational and bureaucratic dynamics within China help shape potential success or failure? How might Chinese space assets be employed in future joint military operations? How have the People’s Liberation Army (PLA) and civilian counterparts leveraged foreign technology to advance China’s competitive position in space?

Managed by a diverse set of military and civilian organizations, Chinese political authorities view space power as one element of a broader international competition in comprehensive power and science and technology (S&T). With the preservation of its monopoly on power as an overriding goal, the Chinese Communist Party (CCP) maintains its legitimacy in part through achievements in space. Adopting an integrated civilian and military perspective in its plans and programs, the PRC’s investment in space technology supports economic development and advances national defense modernization. Successes in space signify the emergence of the PRC as a world power.

The PRC’s programmatic successes in space are significant. Notable achievements include crewed space platforms, reliable space launch vehicles and satellites, and landing a lunar probe on the far side of the moon. China has made substantial progress in developing peaceful and practical uses of space technology. In addition to supplying cost-effective international commercial launch services, the PRC’s space program supports economic development and humanitarian assistance and disaster relief (HADR). At the same time, the space program facilitates the advancement of a modern, high-technology military force.

While the State Council produced space policy white papers in 2000, 2006, 2011, and 2016, China’s space ambitions are inherently dual-use in nature. Freedom of action in space offers the PLA potential military advantages on land, at sea, and in the air.¹ In the past, PLA space and

counterspace programs did not appear integrated from an organizational, operational planning, or acquisition perspective. This has changed because the effects of the ongoing reform and reorganization are now bearing fruit. The PLA’s capacity for space and counterspace operations will advance significantly with the consolidation of research, development, and acquisition (RD&A); training; and operations under a single integrated command. Defense industrial development of key space technologies over the next 15 years is likely to provide a further boost to the PLA’s operational capabilities. Such advances will erode traditional advantages the United States has enjoyed in space.

A Taiwan contingency is the main strategic direction driving PLA force modernization. From the perspective of the PLA, success in such a scenario requires a credible ability to deter, delay, or deny possible intervention of U.S. forces in a cross-Strait conflict. Space assets enable extended-range precision strike operations intended to deny the United States access to or an ability to operate within a contentious area in the Indo-Pacific region.² U.S. military experts tout sophisticated conventional ballistic and ground-launched cruise missiles as an effective means of suppressing regional air defenses and military operations from airbases and carriers at sea. The PLA’s ability to complicate U.S. access to space assets is likely to grow over the next ten to 15 years.

This report examines China’s national and military space program. The first section addresses strategic, doctrinal, and organizational drivers behind China’s civil and military space programs. The report then details the role of the PLA Strategic Support Force (PLASSF) in PLA space systems acquisition, transporting payloads, and maintaining space systems in orbit. The report also outlines the role of the PLASSF in developing space requirements and, to some extent, leveraging space assets for integrated joint operations. The discussion then turns to China’s space research

and development (R&D) and industrial base and an overview of selected national and military programs. Finally, the report addresses the relevance of China’s military-civilian fusion policies and international space cooperation. All Chinese-language sources listed have been translated for the purposes of this analysis.
SECTION ONE

DRIVERS FOR CURRENT AND FUTURE PLA SPACE/COUNTERSPACE CAPABILITIES

Authoritative Chinese government documents and policy statements indicate that the CCP views space as a domain of strategic competition. The CCP considers itself to be in a space race with the United States—a race it intends to win. To that end, the CCP is investing heavily across a broad range of programs that will expand its space capabilities and advance its associated political, economic, scientific, technological, and military objectives.

As China has become a space power, it has developed a number of weapons systems targeting other countries' space capabilities. According to the U.S. Department of Defense (DOD), China is developing multiple counterspace capabilities intended to degrade and deny a potential enemy’s use of space. China’s counterspace capabilities include directed-energy weapons, satellite jammers, and antisatellite (ASAT) missiles. China’s current programs of record include a crewed space station operated by the PLA and dual-use space systems capable of rendezvous and proximity operations.

The CCP conducts an active propaganda and deception campaign to conceal the drivers of its space program, capabilities, and operations. China’s latest white paper on space activities, released in 2016, omitted any mention of the military and state security aspects of its space program. The PRC’s state media outlets routinely obscure the missions of military intelligence payloads, often

reporting them as civilian satellites launched for scientific or economic purposes. According to Chinese government sources, China’s national space program is largely managed by the PLA, and Chinese space assets are probably assigned as either military or dual-use (military-civil) assets to be mobilized in the event of a crisis or war.

Space-Related Policy Statements

Although China’s space-related white papers and state media reporting are often vague, the CCP has publicly released some authoritative government policy documents that are candid. In July 2016, the State Council released its *State Plan for Science and Technology Innovation in the Period of the 13th Five-Year Plan*, a planning document that provides authoritative, space-related policy statements. This plan states that China will develop next-generation space and near-space systems with a focus on improving satellites, launch vehicles, and “long duration near-space information support capabilities.” From 2016 to 2020, the plan aims to “strengthen comprehensive space technology applications supporting and serving national defense and state security, economic and social development, and the deployment of strategic power around the globe.”

To meet the 13th Five-Year Plan objectives, CCP authorities at all levels have been told to focus on the development of new remote sensing payloads and platforms, “super agile satellites and smart space-earth networks,” precision positioning, navigation, and timing (PNT) services, big data analysis, and “earth simulation capabilities drawing from numerous sources.”

8 For example, see *Xinhua*, “China Successfully Launches Yaogan 32 Group 01 Satellite” (我国成功发射遥感三十二号 01组卫星), October 9, 2018. <http://www.xinhuanet.com/politics/2018-10/09/c_1123533360.htm>; China National Space Administration, *China Successfully Launches Yaogan 29 Satellite* (我国成功发射遥感二十九号卫星), November 27, 2015. <http://www.cnsa.gov.cn/n6758823/n6758838/c6770322/content.html>. Yaogan 31 is almost certainly a military ocean surveillance satellite system used for tracking (and targeting) naval ships, and Yaogan 29 a military SAR system capable of capturing imagery at night and through clouds.

Five-Year Plan states that China will develop and test technologies for nuclear-powered spaceflight vehicles and new-concept space transportation systems.\(^\text{13}\)

The plan specifies six primary lines of effort China will take related to the exploration, development, and exploitation of the space domain.\(^\text{14}\) Many, but not all, are on track to be accomplished by the end of the five-year period. The six lines of effort are:

- **Space science satellite series:** According to its five-year plan, China will launch satellites to explore dark matter particles and seek to make major discoveries and breakthroughs in the study of dark matter, quantum mechanics, black holes, microgravity, and space life sciences. By around the year 2020, China will endeavor to have produced and launched a satellite capable of taking panoramic images of the interaction between solar winds and magnetic layers, a global water cycle observation satellite, and an advanced space-based solar observatory satellite. The advanced space-based solar observatory satellite has been delayed and is currently scheduled to be launched in 2022.\(^\text{15}\)

- **Deep space exploration:** Beijing achieved an important planning goal when it successfully landed its Chang’e-4 lunar probe on the far side of the moon on January 3, 2019.\(^\text{16}\) The five-year plan states that sometime in 2020, China will have made significant progress on the critical technologies needed for its future programs to explore an asteroid, explore Jupiter and its moons, and conduct follow-on lunar missions.

- **China’s first mission to Mars:** In May 2019, Wang Chi, the director of China’s National Space Science Center in Beijing, said China was on schedule for launching its first Mars mission in 2020.\(^\text{17}\) If this mission is successful, Chinese scientists envision a future mission to bring back Martian soil samples to Earth by 2030.\(^\text{18}\) In the near term, a scientific probe, the Huoxing-1, is planned to survey Mars’ atmosphere, landscape, and geological and magnetic environment.\(^\text{19}\)

\(^{14}\) Unless otherwise noted, the following section draws from PRC State Council, *State Plan for Science and Technology Innovation in the Period of the 13th Five-Year Plan* (‘十三五’国家科技创新规划), July 28, 2016. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.

• **Earth observation and navigation:** The five-year plan states that China will become self-reliant in earth observation and navigation and will make breakthroughs in the acquisition of precision information from space and the use of large-scale remote sensing capabilities. In April 2019, the *South China Morning Post* reported that China was on track to deliver global Beidou satellite navigation services in 2020, which is ahead of schedule. Global Beidou is an achievement Chinese space industry experts estimate will generate a services market worth $298 billion dollars (2 trillion RMB) and make China less reliant on the U.S.-built and -maintained Global Positioning System (GPS). In October 2019, China launched the Gaofen-10 earth imaging satellite. This followed the launch in March of two earth observation satellites, Gaofen-5 and Gaofen-6, and completed China’s goal of having a system of seven high-resolution satellites of this type in orbit.

• **New space vehicles:** The plan states that China will develop super capable (超强性能) space vehicles and platforms, satellites that can be repaired on-orbit, satellites that can be reused, and space robots (空间机器人). In 2016, China launched the Aolong-1 and Tianyuan-1 spacecraft, which tested satellite robotic arm grappling and satellite refueling in orbit, respectively. From 2016 to 2018, China’s Shijian-17 satellite conducted a series of space rendezvous and proximity operations in geosynchronous orbit (GEO). These tests led U.S. military analysts and space experts to conclude this was a capability that could permit China to direct its spacecraft to rendezvous and interfere with U.S. early warning satellites.

• **Heavy-lift rockets:** The plan states that to advance its deep space exploration and crewed lunar landing goals, China will develop a rocket capable of lifting 100 tons into low-earth orbit (LEO). By 2020, China plans to make breakthroughs in the core technologies needed for a rocket with a diameter over 10 meters and rocket engines powered by 500 tons of liquid oxygen/kerosene and 220 tons of liquid hydrogen and liquid oxygen, respectively. Chinese space industry representatives have said that China’s LM-9 super-heavy-lift rocket

will be operational around 2030, and, if successful, will be the most powerful rocket in the world. According to U.S. company SpaceX, its Falcon Heavy rocket is currently the most powerful rocket available, with the ability to lift almost 64 tons into LEO.

On December 15, 2016, the PRC State Council released its *State Plan for Informationization in the Period of the 13th Five Year Plan*. This planning document states that China will develop a space-based infrastructure to provide seamless internet and other information services to customers anywhere on the earth’s surface using a dispersed array of floating platforms (浮空平台) high in the atmosphere, communications satellites in LEO, and networked space capabilities in higher orbits.

The informationization plan calls for China to integrate remote sensing and telemetry systems associated with the Beidou global navigation satellite system (GNSS), other satellites, near space flight vehicles, and crewed aircraft, while “coordinating the construction of ground-based infrastructure and the development of military-civil fusion, in order to obtain global service capabilities as fast as possible.” The document states that as part of this five-year effort, China will accelerate the deployment of broadband satellites in high-earth orbits (高轨) as well as LEO, and improve its use of the frequency spectrum to “satisfy the needs of the state’s major strategies.”

Underscoring the military nature of China’s space program, the informationization plan says that CCP and state authorities at all levels will “accelerate the construction of military-civil and dual-use global mobile communications satellite systems,” and states that China will “advance military-civil fusion in the space domain and construct an integrated space-to-earth cyberspace infrastructure” (天地一体网络空间基础设施). Notably, the Beidou GNSS “informationization programs” are primarily run by the Office of the Central Cyberspace Affairs Commission, the Central Military Commission (CMC) Equipment Development Department (EDD), and the CMC Joint Staff Department. According to the PRC State Council, China’s space-related

32 Other responsible authorities are listed as the National Development and Reform Commission; Ministry of Industry and Information Technology; Ministry of Science and Technology; Ministry of Finance; Ministry of Public Security; State Administration of Science, Technology, and Industry for National Defense; and State Survey and
“informationization programs” all involve the State Administration for Science, Technology, and Industry for National Defense (SASTIND) and “relevant military departments.”

China’s July 2019 defense white paper highlights the relevance of space in its national competitiveness. It states:

Outer space is a critical domain in international strategic competition. Outer space security provides strategic assurance for national and social development. In the interest of the peaceful use of outer space, China actively participates in international space cooperation, develops relevant technologies and capabilities, advances holistic management of space-based information resources, strengthens space situation awareness, safeguards space assets, and enhances the capacity to safely enter, exit and openly use outer space.

Strategic Drivers and Doctrine

Chinese military writings indicate the PLA’s likely future direction as a space-enabled force. Internal PLA materials, which appear to be indicative of doctrine, point out that China’s space program has “national political significance” because it affects the country’s image and is a symbol of great power status. Moreover, these writings argue that China’s space assets will be critical enablers for the execution of future joint operations. They assert that China’s space program should focus on the warfighting missions and scenarios identified as national priorities. This is imperative, according to the writings, because space capabilities will be the “central pillar” upon which future joint operations rely.

Writings produced by teams of Chinese military theorists at the PLA Army Command Academy and PLA Equipment Academy indicate that advanced space assets are perceived as vital to helping the PLA overcome legacy operational problems. Presumably, these problems still exist. The theorists argue that the PLA had several challenges that negatively affected its ability to fight and win modern wars. One of the shortcomings was the difficulty of collecting battlefield intelligence

in contested environments with legacy platforms. For example, they noted that the PLA’s ground-based intelligence collection centers monitoring enemy communications traffic and radar emissions could be defeated by hostile deception operations and electronic jamming, and reconnaissance aircraft could become easy targets for an enemy with modern air defenses.\(^{39}\) To fill coverage gaps, the theorists envision networks of satellites, space stations, and near-space vehicles capable of continuous reconnaissance and surveillance missions over potential battlefields.\(^{40}\)

These Chinese military writings foresee future satellites working in tandem with advanced communications platforms and relay systems deployed aboard ships, tethered aerostats, and aircraft that would provide redundant communications networks.\(^{41}\) Another challenge the theorists anticipate is conducting air operations during inclement weather. They expect that China’s Beidou GNSS will overcome weather problems that might otherwise ground essential flight operations.\(^{42}\) Chinese military literature has emphasized the importance of space support for precision strike operations and special operations conducted behind enemy lines.\(^{43}\) In addition, PLA writings have frequently highlighted the use of military intelligence satellites for strategic early warning of possible U.S. intervention during a conflict against a third party like Taiwan. Chinese theorists seem to share a widely held view that satellite reconnaissance is the principal means available for assessing the intentions and operations of U.S. forces in a conflict or crisis.\(^{44}\) If true, Beijing is likely to consider space assets associated with this mission to be the most operationally valuable in its entire space enterprise.

Chinese military writings have identified perceived shortcomings in China’s space program. One frequently mentioned vulnerability is the possibility that essential Chinese satellites could be affected by hostile counterspace operations. They anticipate that in a conflict, enemy forces could

jam Chinese satellites in orbit and sabotage their ground support infrastructure. To mitigate this threat, PLA writings recommend hardening satellites, camouflaging and concealing their operations centers, maneuvering when under attack, and augmenting the protection of ground stations. They further recommend using civilian satellites for military missions and stockpiling military satellites as a reserve that can be launched to fill coverage gaps and meet wartime needs. Chinese military theorists express concern that Beidou satellites could be accidentally jammed by friendly air defense units. To reduce the risk of “red-on-red” jamming, they recommend that commanders coordinate operations and carefully control when and where electronic jamming is used.

General Trends since the Late 1990s

China’s space program has made tremendous progress over the past two decades. In 1999, China launched its first uncrewed spacecraft, Shenzhou-1, a test bed for future crewed spaceflights. In 2003, China launched its first crewed mission. In 2007, it conducted a successful test of an ASAT missile, and that same year a Chinese lunar probe orbited the moon. In 2008, Chinese taikonauts completed their country’s first spacewalk, and China launched its first space lab in 2011, followed by a second lab in 2016. At the same time, China’s military space capabilities have grown rapidly and made progress across a broad range of applications. In 2018 alone, China successfully launched 38 space launch vehicles, putting approximately 100 satellites in orbit. China expects to carry out more than 40 launches in 2020.

According to DOD:

China’s space industry is rapidly expanding its ISR (Intelligence, Surveillance, and Reconnaissance), navigation, and communication satellite constellations and making substantial strides in its space lift capabilities, human spaceflight, and

lunar exploration programs. China is looking to expand its space launch vehicle industry to support commercial launches and make rapid satellite launch services available to foreign customers. China is planning to launch, assemble in-orbit, and operate a crewed Chinese space station before 2025.52

Current trends suggest that China’s civilian officials and military officers may become increasingly reliant upon space for decision making during times of crisis—and more vulnerable to having it denied to them.

Space Support for Warfighting Campaigns

To further understand the role of space in Chinese military operations, it may be useful to examine the nature of China’s envisioned warfighting operations.53 PLA sources indicate that Chinese military strategists focus on five major conflict types, which may overlap as part of a larger war. Potential war plans constructed around these operations would require varying degrees of space-enabled military forces. Generally referred to in Chinese literature as joint campaigns (联合战役) or joint operations (联合作战), it seems likely these imagined future wars drive China’s military space buildup to a significant degree.54 The PLA’s main joint operations are as follows:

- **Joint Firepower Strike Operations against Large Island** (大型岛屿联合火力突击作战)55
- **Joint Blockade Operations against Large Island** (大型岛屿联合封锁作战)
- **Joint Attack Operations against Large Island** (大型岛屿联合进攻作战)56
- **Joint Anti-Air Raid Operations** (联合反空袭作战)57
- **Joint Border Area Operations** (边境地区联合作战)

53 This section draws from Ian Easton, “China’s Top Five War Plans,” *Project 2049 Institute*, January 6, 2019. https://project2049.net/2019/01/06/chinas-top-five-war-plans/.

55 While the direct translation of 大型岛屿 is simply “a large island or islands,” it is clear from PLA texts that they are referring specifically to Taiwan and not an abstraction or large islands in general. It might therefore be risky to assume the PLA would use the exact same planning assumptions for notional operations against Luzon, Okinawa, or Guam.

56 This is also sometimes referred to as Joint Landing Operations against Taiwan (大型岛屿联合登岛作战).

57 Note that some PLA writings, such as *Informatized Joint Operations*, refer to this as “Joint Coastal Area Defense Operations” (Binhai Diqu Lianhe Fangwei Zuozhan). It is also sometimes called “Counter-Intervention Operations.”
In the event of conflict, what types of space assets are likely to be assigned to PLA commanders, and how would they notionally be used? The following descriptions briefly outline how Chinese military writings foresee the use of space capabilities in the future operations identified above.

Joint firepower strike operations: Chinese military writings portray space assets as critical for carrying out joint firepower strike operations against Taiwan. They portray ISR satellites as being particularly important. These satellites would be tasked with collecting intelligence used by the PLA to build and update lists of Taiwanese and U.S. targets, monitor and target U.S. ships and planes within 3,000 kilometers (km) of the PRC, and produce battle damage assessments after the initial wave of strikes.⁵⁸

Joint blockade operations: If China’s leaders opted to blockade Taiwan in a coercive manner (as opposed to a prelude to an invasion), PLA theorists believe operations would be centralized and relatively constrained. Operations in this scenario would be prolonged and “highly political,” with Beijing likely interjecting to manage intensity levels and choose targets. Space capabilities would be expected to provide target intelligence and secure communications to commanders in the field, allowing the central leadership to “reach down” and micromanage the blockade in a manner they believed best advanced their strategic goals. If the blockade was intended to soften up Taiwan as a precursor to invasion, space assets would most likely be focused on assessing the optimal time for crossing the Taiwan Strait based on the weather and the status of Taiwanese and U.S. forces.⁵⁹

Joint attack operations: PLA writings portray the invasion of Taiwan as the most challenging and important future mission of the Chinese military. To prepare for this operation, China’s military space units are expected to continuously collect and analyze intelligence on Taiwan’s beaches, currents, tides, roads, bridges, waterways, electric power grid, reservoirs, oil and gas stocks, airports, seaports, command posts, ground force units, and air defense networks. During wartime operations, China’s space assets would be expected to provide 24/7 intelligence on the cross-Strait battlefield and strategic early warning should the United States intervene. Chinese satellites and near-space drones would be called upon to provide wideband, high-capacity, jam-resistant, encrypted communications to all the units involved in the operation. Envisioned future Chinese space architecture will allow the PLA to merge and link all joint forces together into an organic system that allows operational commanders to: (1) find targets, (2) decide how to strike them, (3) send strike orders to forward units, (4) neutralize targets, (5) assess battle damage, and (6) consider whether or not re-strikes are required.⁶⁰

Joint anti-air raid operations: PLA writings state that intelligence provided by satellites would be vital to the success of joint anti-air raid operations. In peacetime, PLA space forces are expected to collect intelligence on U.S. airbases and aircraft carriers within range of potential targets in China. Space capabilities are to provide PLA commanders information on the numbers, parking sites, and types of aircraft at each base, and gather intelligence on the ranges and stockpiles of their munitions. In addition, space assets would be tasked with monitoring the movements of U.S. ships, including destroyers and submarines, which could launch cruise missiles at targets in China. As such, PLA studies state that early warning of the first wave of U.S. strikes would be crucial for defending against an attack and disrupting follow-on operations. These PLA writings note that the United States could launch air raids from almost any direction, and assert that space assets should prioritize warning intelligence based on a three-tier system, with tier one representing critical political, economic, and military targets in the PRC’s major cities. Tiers two and three would be important but less vital potential targets, which would receive warning intelligence from space assets later or may not receive any warning at all.

Joint border area operations: Chinese military theorists anticipate that in the event of a border war, India would be unlikely to attack until it had amassed superior forces at its forward bases. As such, the priority mission of Chinese space assets during these operations would be to provide early warning intelligence of hostile enemy deployments and ensure China’s leaders were not caught off-guard by a potential Indian surprise attack. After the outbreak of hostilities, the priority mission of China’s space forces would be to provide reliable satellite communications to combat units in the mountains and provide combat commanders with imagery intelligence.

The following table shows how one internal PLA handbook published by China’s National Defense University envisions the role military-civil space assets will play in future joint operations.

61 In addition, note that other U.S. targets in the Pacific would include communications sites, command posts, intelligence collection centers, radars, fuel dumps, ammunition dumps, aircraft repair hangars, spare parts garages, and other logistical facilities. See Wang Yongping, ed., *Space Information Support Operations* [空间信息支援作战], National Defense University Press, 2014, 240–247.

Figure 1: PLA Space Missions in Support of Joint Operations

Space, Distant Operations, and Outlook for the Future

The primary near-term focus of China’s military space program is to enable successful joint operations along the PRC’s periphery. Space capabilities being developed and fielded will increasingly allow the PLA to operate globally. The PLA Navy already has demonstrated an ability to sail and operate naval task forces around the world, including in the Mediterranean, Baltic, Bering, and Caribbean seas. The PLA Air Force (PLAAF) is currently capable of conducting bomber operations past the first island chain and has deployed transport aircraft and airborne units as far from China as Turkey, Australia, and Venezuela. RAND analysts expect that by the early to mid-2020s, the PLAAF will deploy a next-generation long-range strategic bomber capable of threatening Hawaii, Australia, and possibly the U.S. mainland.

As China’s space capabilities improve, so too will its ability to conduct larger and more complex operations at greater distances from China. U.S. policymakers should expect that by the early 2020s, space-based communications, navigation, and intelligence assets will enhance the PLA’s lethality across a range of scenarios and allow China to project power in West Africa, Central America, South America, Antarctica, and the Arctic. Improved space architecture will enable the PLA to conduct precision strikes on targets at greater range, will guarantee Chinese forces access to PNT services provided by Beidou instead of GPS, and could significantly expand the operational ranges of Chinese strategic forces. Secure satellite communications could support long-distance nuclear submarine patrols. They may also enable strategic bomber patrols and ground-based missile deployments overseas.

Since 2016, China’s government has sought to acquire airbases and other facilities in Greenland and the Azores that could be used for military power projection operations against the continental United States and U.S. forces in the North Atlantic and Europe. While these efforts have been unsuccessful to date, China will likely continue making attempts to gain basing rights in unexpected geographical areas. Future Chinese overseas bases will require global satellite communications, precise PNT, and regularly updated remote sensing information on enemy targets. In addition to supporting peacetime presence and humanitarian operations, Chinese space assets will enhance the ability of Chinese marines and special operations forces to carry out unconventional missions around the world using satellite services, something they are beginning to include in their training.

68 For example, in July 2018, it was reported that PLA special operations forces were utilizing satellite imagery in their exercises. See Yang Qingmin and Xu Chunlong, “PLA Army Conducts First Assessment of Its Special Operations Forces,” Ministry of Defense, July 17, 2018. http://eng.mod.gov.cn/news/2018-07/17/content_4819487.htm.
SECTION TWO

PLA SPACE/COUNTERSPACE INFRASTRUCTURE: THE ROLE OF THE PLA STRATEGIC SUPPORT FORCE

In early 2016, the Chinese military undertook a sweeping reorganization and reform program with the stated objective of molding a joint force capable of a broad range of contingencies. Several drivers have influenced the Central Military Command’s (CMC) ongoing restructuring and reform initiative. The reform and restructuring involved elimination of the four general departments: the General Staff Department (GSD), General Political Department (GPD), General Logistics Department (GLD), and General Armaments Department (GAD). In their place, the CMC established new departments, transformed the PLA Second Artillery Force into the PLA Rocket Force (PLARF), and established a new PLA Army headquarters and the PLASSF. The seven Military Regions were consolidated into five Theater Commands (TCs). Each of the service headquarters has reinforced their organizing, training, and equipping missions.

The ongoing reform and reorganization effort likely will improve China’s ability to realize its space ambitions. First, the establishment of the PLASSF integrates space-related RD&A, operations, and training under a single authority. Discussion of an independent space force had been underway since the 1990s. Before 2016, both the former GSD and GAD managed RD&A associated with their respective missions. The merger of space missions under a single authority is likely to create a more efficient and effective system for overseeing development and integration of new capabilities into the active force. With space-related training managed by a central authority, the reorganization also will likely create operational synergies that did not exist before 2016.

The PLA is seeking to improve its space situational awareness and making rapid advances in its space-based early warning capabilities. China reportedly has been cooperating with Russia in

developing an early warning capability.71 China has cooperated with Ukraine on space debris monitoring and research on deep space issues.72

PLASSF senior officers manage at least three first-level administrative departments, two systems departments, and at least 12 corps leader-grade or corps deputy leader-grade base commands. The PLASSF Space Systems Department is central to China’s ambitions in space. The PLASSF maintains space situational awareness through a corps leader-grade command headquartered in Xian, a corps leader-grade maritime space tracking command, and a control center in Beijing. This network integrates space tracking data from ground-based assets in China, sea-based units, and a number of international ground stations located in the Indo-Pacific region and elsewhere (see below).

The PLASSF also oversees an expanding space-based ISR network that enables monitoring of U.S. activities in the Indo-Pacific region and beyond. The expansion of this network is likely to enhance China’s ability to conduct military operations farther from shore. Over the years, the PLA has fielded electro-optical (EO), radar, and other space-based sensor platforms that can transmit images of the Earth’s surface to ground stations in near-real-time. China is investing heavily in EO, synthetic aperture radar (SAR), and electronic reconnaissance surveillance capabilities. Future deployments of potential sea-based imagery receiving stations, additional data relay satellite systems, or the further establishment of ground stations abroad could enhance China’s extended-range near-real-time targeting capability.

Importantly, a growing body of Chinese military-technical literature suggests planning for a counterspace capability. The PLA also has deployed or is developing jamming and cyberspace capabilities, directed energy weapons, on-orbit capabilities, and ground-based ASAT missiles that can deny an adversary unimpeded use of its own satellite systems. The specific PLA service responsible for direct ascent ASAT operations remains unknown. However, technology demonstration testing of a space intercept system has been carried out since at least 2005. Testing of kinetic kill vehicles (KKVs), high-powered lasers, co-orbital satellites, electronic jamming, and—possibly—cyberattacks have been reported. The opacity surrounding China’s space programs suggests other clandestine counterspace weapons programs may also exist.

The PLASSF plays a critical role in supporting national- and theater-level command and control. The CMC Joint Staff Department (JSD) manages the national military command system, with the CMC JSD Operations Bureau functioning as the core duty staff within the CMC Joint Command Center. PLASSF staff officers probably augment the CMC Joint Command Center’s duty office during peacetime, and in higher readiness levels. CMC Joint Command Center operations are also

augmented by at least ten dedicated support groups (保障大队) that are responsible for mission planning/targeting; survey, mapping, and navigation; network/electronic countermeasures; battlespace awareness; meteorology/hydrography; and other functions. Support groups likely rely heavily on PLASSF space assets.

Space Systems Department and Subordinate Base Commands

The PLASSF Space Systems Department was created through the merger of the former General Armaments Department (GAD) China Launch and Tracking Control General (CLTC) and space-related organizations previously under the General Staff Department (GSD) Operations Department and GSD Intelligence Department. The Space Systems Department oversees at least six corps or corps deputy leader-grade operational commands responsible for space launch, tracking, and control. The PLASSF tracks and controls space assets through the Xian Satellite Control Center (Base 26) and the Beijing Space Command and Control Center in the northern suburbs of Beijing, which integrates space tracking data from ground- and sea-based units. Three corps leader-grade space launch base commands are in Jiuquan (Base 20, aka Shuangchengzi), Taiyuan (Base 25, aka Wuzhai), and Xichang (Base 27). Base 27 probably oversees the launch complex on Hainan Island. These space launch centers also support ballistic missile and kinetic space interceptor testing. New units, possibly corps deputy leader-grade and related to space applications, have been formed in Beijing and Wuhan. Newly established PLASSF corps-level units suggest possible direct operational support to TC leaders in a contingency.

Other base commands are responsible for space situational awareness. The Xian Satellite Tracking and Control Center (Base 26) is a corps leader-grade organization responsible for ground-based space tracking, telemetry, and control. Although unconfirmed, Base 26 may oversee the Beijing Space Flight Command and Control Center and its subordinate entities. The China Satellite Maritime Tracking and Control Department (Base 23, Jiangyin) is a corps leader-grade

73 The former designation of the Target Control Center (目标控制中心) was 61683 部队. For reference, see CMC Joint Command Center Survey and Navigation Group (军委联合作战指挥中心测绘导航大队)(依法履行检察监督职责体现使命担当), 人民监督, May 18, 2017. http://www.fyfzw.cn/html/2017/jd_0518/25904.html. The Network/Electronic Countermeasures Group appears to be founded upon a core element of the former GSD Fourth Department ECM Center. With most of the former 4PLA transferred to the PLASSF, the Network ECM Support Group may be an interface dedicated to joint command and control. For references to a CMC Joint Command Center Network/ECM Support Group, see (军委联指网电对抗大队)(3103 部队视频信息系统竞争性谈判采购公告), October 19, 2016. http://www.bidchance.com/calggnew/2016/10/19/16801361.html and (北京市人民检察院召开驻京部队市人大代表座谈会), People’s Procurator of Beijing Municipality, December 5, 2016. http://www.bjjc.gov.cn/bjweb/jcyw/90801.jhtml. The Battlespace Awareness Support Group (战场态势大队) may be assigned a Military Unit Cover Designator (MUCD) of 31004. For references, see (朱玉萍), (王海), and (路征), PLA Daily, “Electromagnetic Situation Fuses into Battlefield Situation—The Operational Situation Can Be Forecasted to Determine Enemy Intent” (电磁态势融入战场态势可预测作战态势判断敌方企图), February 8, 2018. http://military.people.com.cn/n1/2018/0208/c1011-29812995.html. The precise mission of the Battlespace Awareness Group (possible Unit 31004) remains unclear. However, it appears related to intelligence/reconnaissance. The Meteorological and Hydrological Group (Unit 31010) may be staffed by officers from the CMC Joint Staff Department Battlefield Environment Support Bureau. The group could be an outgrowth of the former GSD Meteorological, Hydrological, and Space Weather Command (Unit 61741), a division leader-grade unit.
organization that is responsible for sea-based satellite tracking, control, and launch vehicle transportation to Hainan.

The PLASSF’s first-level departments are responsible for structural integration (or “cross-domain fusion”) of space and network operations. The PLASSF Space Systems Department appears responsible for space launch operations, space tracking and control, and applied space operations. The Space Systems Department leaders are supported by headquarters staff, specifically the Staff Department, Political Work Department, Logistics Department, and Equipment Department.

Senior PLASSF leaders are responsible for military space operations. The PLASSF commander and political commissar have extensive experience in operations and theater-level leadership positions. Both are TC leader-grade officers, which extends significant stature within the PLA.74 The PLASSF is equal in grade to the PLA Army, PLA Navy, PLAAF, PLA Rocket Force, and the five TCs. The PLASSF’s first-level departments—Staff, Political Work, Logistics, Space Systems, and Network Systems—and the Discipline Inspection Commission are responsible for structural integration (or “cross-domain fusion”) of space and network operations. A limited number of sources suggest the existence of a PLASSF Equipment Department as well.75

Space Launch Operations

PLASSF space launch operations are carried out from four launch complexes. Each is led by a corps or corps deputy leader-grade officer. The Jiuquan Satellite Launch Center (PLASSF Base 20) supports LM-2C, LM-2D, and LM-4 launches into LEO, as well as crewed space missions on the LM-2F. Base 20 is also a key facility for short-range ballistic missile, land attack cruise missile, and space intercept testing. Subordinate units are responsible for space launch operations, launch tracking, missile testing, impact area management, transportation, propellant loading, and communications.76

74 The commander, Lieutenant General Li Fengbiao, is a career PLAAF officer with a background in the airborne corps. The political commissar, General Zhang Weiping, previously served as political commissar of the Eastern Theater Command. At least three deputy commanders and two deputy political commissars support the commander and political commissar in their duties. The PLASSF chief of staff previously directed the former GSD Operations Department, reflecting a merging of operations and strategic ISR.

75 Harbin Institute of Technology, “Assisting Military-Civil Fusion, The Important Tool for Casting the Nation: Changzhou Military-Civil Fusion Industrial Park Formally Established, Businesses Entering the Park Enjoy Comprehensive One-Stop Service!” (助军民融合、铸国之重器：常州军民融合产业园正式开园，入园企业享受全方位、一站式服务!), May 24, 2017. http://edp.hit.edu.cn/2017/0524/c7876a178695/page.htm. As a side note, the PLASSF is an anomaly because the Space Systems Department and Network Systems Departments are both first-level departments at the same grade as the Staff Department, Political Work Department, and Discipline Inspection Commission. As such, they cannot be subordinate to any of those departments. Furthermore, because of their grade, each of the directors serves as a concurrent PLASSF deputy commander and their political commissars serve as concurrent PLASSF deputy political commissars. Each of their second-level bureaus are corps deputy leader-grade organizations.

76 As of 2019, the commander/director of Base 20 was Major General Zhang Zhifen (张志芬). The Impact Area Department is probably headquartered in Korla.
The Taiyuan Satellite Launch Center (PLASSF Base 25), headquartered in Shanxi’s Kelan County, functions as China’s primary platform for satellite launches into sun-synchronous orbit (SSO) as well as testing of medium- and intermediate-range ballistic missiles. Like Base 20, subordinate units are responsible for space launch operations, missile testing, propellant loading, launch tracking, and communications. More recently, Taiyuan established a maritime team and was responsible for the launch of the LM-11 in June 2019.

The Xichang Satellite Launch Center (PLASSF Base 27) is China’s primary platform for launch of communication and weather satellites into GEO. At one point, Xichang reportedly had capacity to launch between eight and ten satellites a year. Base 27 was the launch point of the PLA’s January 2007 test of a KKV against an aging Chinese weather satellite. Although unconfirmed, Base 27 may oversee launch operations from the Wenchang Spacecraft Launch Center on Hainan Island. The Wenchang complex is responsible for LM-5 and LM-7 launch operations in support of China’s crewed space program. Launch vehicles are transported to Hainan via ship from assembly facilities in Tianjin. Initial launches of the LM-5 and LM-7 took place in 2016 and 2017. It is possible the LM-9 heavy-lift vehicle, scheduled to be operational before 2030, may also be launched from Hainan.

The PLASSF space launch infrastructure has improved its efficiency and effectiveness over time. DOD indicates China marked its largest space launch year to date in 2018, successfully launching

77 As of 2019, the commander/director of Base 25 was Yu Zhijian (于志坚) and political commissar was Wan Minggui (万明贵).

79 China Space News, “Xichang Satellite Launch Center Can Launch at Least 10 Satellites” [西昌卫星发射中心年发射能力达 10 颗以上], August 4, 2010. Launch campaigns average 25 days. Also see Fu Zhiheng (Vice President, China Great Wall Industry Corporation), “Chinese Launchers and COMSATS: Development & Commercial Activities,” World Space Risk Forum, Dubai, February 28–March 1, 2012. Major General Zhang Xueyu (张学宇; b. 1963) is cited in 2017 reporting as the commander of the Xichang Space Launch Center. He previously directed the PLASSF Space Systems Department Equipment Department. Previous assignments include GAD deputy chief of staff (2013–2016) and commander of the GAD Base 32 (华阴兵器试验基地). As of 2019, the political commissar is Dong Chongqing (董重庆).

38 of 39 space launch vehicles and orbiting approximately 100 spacecraft. In 2019, China successfully carried out 32 of 34 launches.

Space Situational Awareness and Control

As China’s presence in space expands, so too does the importance of space situational awareness (SSA). The PLASSF manages a well-established SSA infrastructure. SSA entails near-real-time knowledge of a space flight vehicle’s location, the ability to track and predict a space flight vehicle’s future location, and cataloguing of all space objects. SSA also includes understanding a potential adversary’s intent for their spacecraft. China’s SSA system is gradually expanding in scope and sophistication to accommodate its own growing presence in space, and to address perceived challenges from other space-faring nations.

The PLASSF’s SSA network is probably able to search, track, and characterize satellites in all earth orbits, supporting both space operations and counterspace systems. The PLASSF space surveillance and control system consists of a tracking center in Xian, fixed land-based sites, at least one mobile system, and as many as seven Yuanwang tracking ships capable of operating throughout the Pacific, Atlantic, and Indian oceans. The PLASSF also operates foreign satellite ground stations (discussed in following section).

Xian Satellite Tracking and Control Center: Headquartered in Shaanxi’s Weinan City, the Xian Satellite Tracking and Control Center (PLASSF Base 26) is a corps leader-grade command responsible for land-based space tracking, telemetry, and control. Base 26 likely plays a role in monitoring and identifying debris and other objects in space. Although unconfirmed, Base 26 may oversee the Beijing Space Flight Control Center and its subordinate entities. The Base 26 space surveillance system may fuse data from other sources, including the China Academy of Science’s Space Target and Debris Observation and Research Center in Nanjing.

85 The Xian Satellite Measurement and Control Center, which carries a military cover designator of Unit 63761, appears to be a subordinate to the Base 26 command in Weinan. Other subordinate elements are collocated with or near Base 26 general headquarters in the Weinan area: Qingdao (63756 Unit), Xiamen (63758 Unit), Nanning (63760 Unit), Xian (63761 Unit), and Shaxian (Fujian Province) Yangfang Village (63762 Unit).

86 In years past, the Base 26 network included the 7010 space and missile radar system mounted on the side of Huangyang Mountain in Xuanhua County, north of Beijing. The PLA Air Force originally operated the system when first entering initial operating capability in 1976, but later was resubordinated to Base 26 (old MUCD of 89851 Unit). The system was dismantled in the late 1980s/early 1990s. For an excellent overview of Base 26, see Wangchao Network, “Loudouzi (The Leaker): Overview of Xian Measurement and Control Center” [漏斗子：西安测控中心概览], October 10, 2005. http://www.1n0.net/Article/Print.asp?ArticleID=6279. The author has a record of reliable reporting.

87 The commander of Base 26 (63750 Unit) is equivalent in grade to a corps leader. Yu Peijun (余培军) was cited in 2017 reporting as director of the Xian Satellite Control Center. He previously served as deputy director.
surveillance information may be provided by the PLASSF Network Systems Department.\(^8\) China’s R&D community also has been exploring options for space-based SSA platforms.\(^9\) Base 26 oversees deep space tracking facilities in northeast China. Base 26 may also oversee a tracking and control station on Duncan Island in the South China Sea. Construction on the site began in 2011.\(^9\)

China Satellite Maritime Tracking and Control Department: The China Satellite Maritime Tracking and Control Department (Base 23, Jiangyin) is a corps leader-grade organization that is responsible for sea-based satellite tracking, control, and launch vehicle transportation to Hainan. As many as seven Yuanwang ships are in operation as of 2019.\(^9\)

Beijing Space Command and Control Center: During peacetime, the PLASSF likely directs space operations from the Beijing Space Command and Control Center. Established in 1996, the center appears to be a division leader-grade unit manned 24 hours a day, with a PLASSF deputy chief of staff serving as a watch officer. Located on Beiqing Road in Beijing’s northern suburbs, the facility hosts senior CMC, PLASSF, and civilian leaders during major events.\(^9\)

Regarding international SSA cooperation, China is a member of the Asia-Pacific Space Cooperation Organization (APSCO). The organization manages a space surveillance initiative known as the Asia-Pacific Ground-Based Optical Space Object Observation System (APOSOS). In support of the initiative, China provided telescopes to Peru, Pakistan, and Iran that are capable of tracking objects in LEO and GEO. Tasking and data are funneled through the Chinese Academy

\(^8\) Although speculative, space tracking data from PLA Air Force radar systems may also contribute to a single integrated space picture. Very-long-baseline interferometry (VLBI) sites track space objects simultaneously via telescopes that are combined, emulating a telescope with a size equal to the maximum separation between the telescopes. Using electronic intelligence (ELINT) methodology, VLBI measures the time difference of arrival (TDOA) of radio waves at separate antennas. VLBI sites, presumably subordinate to the brigade or regimental-level 61540 Unit, are in Shanghai Sheshan; Kunming; Guizhou Qiaodongnan Huangping County; Wulumuqi Nanshan; and Beijing Miyun. See China Surveying and Mapping Yearbook [中国测绘年鉴], *PLA 61540 Unit Successfully Joins Moon Satellite Tracking and Control* [解放军61540部队成功参与探月卫星测控], July 29, 2008. http://zgchnj.sbsm.gov.cn/article//ljnjll/lbnj/tz/zdsj/200807/20080700039517.shtml.

\(^9\) For PLASSF reporting on the Yuanwang, see Zou Weirong (邹维荣) and Wei Rong (巍龙), “Yuanwang-7 New Generation Survey Ship Officially Commissioned” (我国新一代远洋航天测量船远望7号船正式入列), *PLA Daily*, July 12, 2016. http://zz.81.cn/content/2016-07/12/content_7149563_2.htm.

\(^9\) The center may be assigned a designation of 63920 部队.
of Science’s (CAS) National Astronomical Observatory. APOSOS has near-full coverage of LEO and GEO, and is planning an improvement to its optical capabilities.93

ISR, Navigation, Communications, and Meteorological/Hydrological Capabilities

The PLASSF has launched a range of satellites that have significantly enhanced ISR capabilities, fielding advanced communications satellites able to transmit large amounts of data, space systems able to provide precise PNT services, and new weather and oceanographic satellites. PLA long-range precision strikes within the Indo-Pacific region would rely in part on high-resolution, dual-use space-based SAR, EO, and possibly electronic intelligence satellites for surveillance and targeting. Existing and future data relay satellites and other beyond-line-of-sight communications systems could convey targeting data to and from TC centers.94 The PLASSF also manages the application of data from space-based systems. Corps or corps deputy leader-base commands appear responsible for managing the ground segments of the PLAs space-based ISR architecture, satellite communications network, China’s Beidou GNSS, and space-based meteorological and oceanographic system. PLA officers have been noted engaged in international cooperation meetings with Russia.95

Space-Based ISR

The PLASSF has focused its resources on increasingly capable remote sensing satellites employing digital camera technology, as well as space-based radar for all-weather, 24-hour coverage. These capabilities are being augmented with electronic reconnaissance satellites able to monitor radar and radio transmissions. Electronic reconnaissance satellites monitor radiofrequency emissions from U.S. and other naval forces. Electronic reconnaissance systems can cue EO and SAR satellites.96 The PLASSF Space Systems Department Space Reconnaissance Bureau

93 Members include Iran, Bangladesh, Mongolia, Indonesia, Peru, Turkey, and Thailand. See the APSCO website at http://www.apsco.int/html/comp1/content/APSCOCouncil/2019-02-28/74-260-1.shtml.

94 Xinhua, “China Blasts Off First Data Relay Satellite,” April 26, 2008. For an example of the data relay satellite being used for missile guidance, see Chen Lihu, Wang Shilian, and Zhang Eryang, “Modeling and Simulation of Missile Satellite-Missile Link Channel in Flying-Control Data-Link” (基于卫星中继的导弹飞控数据链链路分析), Systems Engineering And Electronics29:6 (2007). The chief designer of the satellite was Ye Peijian [叶培建]. Also see Wu Ting-yong, Wu Shi-qí, and Ling Xiang, “A MEO Tracking and Data Relay Satellite System Constellation Scheme for China,” Journal of Electronic Science and Technology of China (December 2005).

probably manages PLA equities in remote sensing satellites.97

Electro-Optical ISR: China’s first experimental imagery system was launched in November 1975, and China has since gradually expanded its EO satellite network. EO satellites appear to be assigned Yaogan and Gaofen designations. SASTIND manages the Gaofen satellite engineering program, suggesting its dual-use nature. At least eight Gaofen satellites, many equipped with an EO sensor, have been launched since 2013, with the latest (Gaofen-11) launched in 2018. Other Gaofen satellites are equipped with SAR and hyperspectral sensors.98 The PLA also has launched a number of what are probably EO satellites with Yaogan designations. The Yaogan-28 was launched in November 2015 and at least two of the Yaogan-30 series satellites launched in 2016/2017 are believed to carry EO payloads. The China Aerospace Science and Technology Corporation (CASC) Fifth Academy (China Academy of Space Technology [CAST]) appears to serve as lead systems integrator for EO satellites.99

Synthetic Aperture Radar Satellites: SAR satellites are a core component of the militarily relevant surveillance architecture supporting over-the-horizon (OTH) targeting of surface assets. SAR satellites use a microwave transmission to create an image of maritime and ground-based targets. They can operate night or day and in all weather conditions, and are therefore well suited

97 The Space Reconnaissance Bureau likely is assigned an external designation of 61646. It oversees the Beijing Institute of Remote Sensing Information (北京遥感信息研究所). As of 2018, Major General Jiang Bitao (江碧涛; b. 1967) serves as a deputy director or possibly director of the PLASSF Space Reconnaissance Bureau. She served as a chief designer for a satellite ground application system and played a key role in program validation for a number of programs. Jiang previously served as chief engineer (总工程师) and carries a researcher (研究员) designation. She has been affiliated with Unit 61646, the Space Reconnaissance Bureau, and the Beijing Institute of Remote Sensing Information. Among various sources, see Scientist Committee (学术委员会), CAS Key Lab for Space Utilization website. http://lsu.csu.cas.cn/sysgk/xswyh/. Also see “Xie Dong, Member of the Branch Party Committee, Leads Team to Visit PLA Strategic Support Force Bureau Director Jiang” (分党组成员谢东带队拜访解放军战略支援部队某局局长), August 8, 2018. https://www.meipian.cn/1ibgek24.

for the detection of ships in a wide area. SAR imagery is key for automated target recognition of ships at sea.\(^\text{100}\) China is expected to have multiple types of space-based SAR systems in orbit over the coming years, often catering to various users. The PLA’s first dedicated military SAR satellite likely was deployed in 2006.\(^\text{101}\) Since then, remote sensing satellites with a SAR package include the Gaofen-3, Yaogan-1, Yaogan-6, Yaogan-10, Yaogan-13, Yaogan-18, and Yaogan-23, and possibly the Yaogan-29.\(^\text{102}\) The CASC Shanghai Academy of Space Technology (SAST) likely serves as lead systems integrator for SAR satellites.\(^\text{103}\)

Electronic Reconnaissance Satellites: To augment its SAR and EO systems, the PLA likely has fielded a space-based electronic reconnaissance architecture.\(^\text{104}\) The PLA experimented with electronic reconnaissance satellites in the mid-1970s.\(^\text{105}\) Design studies on a modern electronic reconnaissance satellite constellation for geolocation of surface targets began in the mid-1990s.\(^\text{106}\)

\(^\text{100}\) Chen Deyuan and Tu Guofang, “SAR Image Enhancement Using Multi-Scale Products for Targets Detection,” *Remote Sensing Journal [Yaogangxuebao]* (March 2007): 185–192. The authors are from the Institute of Electronics, CAS.

\(^\text{101}\) In development for a decade, the Yaogan-1 was launched from Taiyuan Satellite Launch Center on April 27, 2006. A subsequent system, the Yaogan-6, was launched on April 22, 2009, and at least three follow-on variants have been launched to date. Among these are the Yaogan-8, developed over a four-year period, and the Xiwang-1 microsatellite, launched on an LM-4C from Taiyuan on December 16, 2009. Other possible follow-on variants, designated Yaogan-10 and Yaogan-13, were launched from Taiyuan in August 2010 and November 2011, respectively. See China Ministry of Science and Technology, *CASC Eighth Academy Successfully Launches Yaogan-10 Satellite* [航天八院遥感卫星十号发射成功奋战发射场], November 1, 2010. http://kjj.boluo.gov.cn/show.asp?id=481.

\(^\text{103}\) For example, Chen Junli (陈筠力; b. 1972) was cited in 2007 reporting as director of the 509th Research Institute’s general design lab (总体室主任), and as directing designer on the Yaogan-1 satellite. Chen has published on distributed and synchronized SAR satellite architecture control issues. Chen was also chief designer for both the Yaogan-6 (遥感六号), which was launched from Taiyuan in April 2009, and the Yaogan-13 satellite, which was launched from Taiyuan on November 30, 2011.

\(^\text{105}\) The first electronic satellite was launched from Jiuquan in July 1975 on an FB-1 launch vehicle, which was specifically designed to meet the weight and orbital accuracy requirements of electronic reconnaissance platforms. The FB-1 launched two more experimental satellites in December 1975 and August 1976. For unknown reasons, the program was discontinued. Before the reorganization, the former GSD ECM and Radar Department (GSD Fourth Department) had the ELINT portfolio within the PLA’s SIGINT apparatus. ELINT receivers are the responsibility of the Southwest Institute of Electronic Equipment. The former GSD 54th Research Institute supported the ECM Department in development of digital ELINT signal processors to analyze parameters of radar pulses. See Ping Kefu, “Capabilities of The GSD Third Department in Technical Intelligence,” *East Asian Diplomacy and Defense Review* 96:5, 6. Information on China’s SIGINT apparatus drawn from Desmond Ball, “Signals Intelligence in China,” *Jane’s Intelligence Review*, August 1, 1995, 365–375; Robert Karniol, “China Sets Up Border SIGINT Bases in Laos,” *Jane’s Defense Weekly*, November 19, 1994, 5.

The PLA appears to be investing resources into constellations of two, three, or four satellites using time difference of arrival direction finding or geolocation techniques. Leading candidates for electronic reconnaissance satellites include the Shijian-6, Yaogan-9, and Yaogan-16.

The Yaogan-30 satellite series appears to be the most recent electronic reconnaissance system. As of October 2019, China had 15 Yaogan-30 military satellites in orbit. These satellites appear to be part of a naval ocean surveillance system that enables the PLA to triangulate and target U.S. aircraft carrier strike groups and other warships of interest. These satellites operate in trios and likely support China’s antiship weapons programs, which include ballistic missiles, cruise missiles, and armed drones designed to evade or destroy the air defenses surrounding U.S. aircraft carriers. According to one analysis of orbital data, China’s 15 Yaogan-30 satellites provide the PLA with near-continuous global coverage of all U.S. naval activities relevant to Chinese security.
interests. Major surface vessels, such as aircraft carriers, have prominent electromagnetic, acoustic, and infrared signatures and large radar cross sections. Although controlling emissions from carriers is feasible for limited periods of time, air operations depend on electromagnetic radiation.

Organizations most likely responsible for space-based electronic reconnaissance, such as CASC Eighth Academy 509th Institute and the Southwest Institute of Electronic Equipment, have published detailed assessments of how best to track and target aircraft carriers and other large naval ships. Chinese writings have indicated that while the numbers of electronic reconnaissance satellites are increasing, they have been unable to meet the demands placed on them from different intelligence consumers. Technical studies also have assessed the utility of electronic reconnaissance payloads on satellites in GEO. An electronic reconnaissance satellite

115 Wang Huilin et al., “Design and Implementation of Area-Covering Electronic Reconnaissance Satellite Planning System” [面向区域的电子侦察卫星规划系统设计与实现], Computer Engineering and Applications [计算机工程与应用]46:26 (2010): 209. The authors are affiliated with the National University of Defense Technology’s National Key C4ISR Technology Laboratory in Changsha. Their research was conducted as part of the 973 Program.

constellation would offer the PLA the ability to geolocate U.S. and allied naval ship activity. The latest Yaogan-30 satellite was launched in July 2019.117

In short, increasingly greater spatial resolution and an ability to monitor U.S. activity in the Indo-Pacific region (including the locations of U.S. aircraft carrier battle groups) in all weather conditions is likely to enhance China’s ability to conduct military operations farther from shore. Space-based sensors also provide the data necessary for mission planning functions, such as terminal guidance for ballistic and land attack cruise missiles.

Survey, Mapping, and Navigation

The PLASSF also is responsible for space-based military survey, mapping, and navigation operations. Survey, mapping, and navigation systems facilitate force movement and logistics, and are used for ballistic and cruise missile targeting and precision-guided munitions. A corps leader-grade base command, probably designated as Base 35, is headquartered in Wuhan and may have integrated a range of survey, mapping, and navigation missions previously carried out by the GSD Operations Department and Military Regions. Division leader-grade “battlefield environment support” (战场环境保障) units previously under GSD include the Beidou GNSS ground segment, which previously was managed by the GSD Operations Department Survey and Mapping Bureau.118 Base 35 appears to have a working relationship with Wuhan University’s Collaborative...

118 Base 35 may carry an external designation of 32020 部队. For reference to Unit 32020 on Wuhan’s Donghu East Road (武汉市武昌区东湖东路), see (32020 部队 54#楼整修工程招标公告) at \url{http://cn.jixiexinxi5.com/supply/201710/17/492280.html}. For reference to PLASSF Base 35 (战略支援部队 35 基) and Base 35 Staff Department division directors Liu Chenglai and Li Hengyuan (54#楼整修工程招标公告) at \url{http://www.lmars.whu.edu.cn/index.php/kyst/2029.html}. Among other sources, see Zou Weirong (邹维荣) and Zong Zhaodun (宗兆盾), “Commemorating Tan Shusen of Beidou Satellite Navigation Command” (纪念北斗事业的某卫星导航定位总站高级工程师谭述森院士), \textsl{PLA Daily}, February 27, 2016. \url{http://www.lmars.whu.edu.cn/index.php/kyst/2029.html}.

The Beidou satellite navigation and positioning command carries an external designation of 61081 部队. Also see Marcus Clay, “Supporting the Infinitive Battlefield,” \textsl{China Aerospace Studies Institute}, 2019, 38–41.
Innovation Center of Geospatial Technology.\(^\text{119}\)

Three generations of Beidou satellites have been in operation since 2000. China’s first-generation navigation satellite system, the Beidou-1, consisted of two geosynchronous satellites (plus spares) for civilian and military purposes and was limited to coverage within the Asia-Pacific region. This was an active location system, with a signal from a handheld unit transmitted to the two geosynchronous satellites, which then transmitted the signal to an earth station. The earth station measured the differential in the two signals (one per satellite), determined the location that fit, and then transmitted that data back to the handheld unit.

Planning for a second generation of navigation satellites, Beidou-2 (Compass), began in April 1999 under the sponsorship of the former GSD First Department and with participation from civilian entities. The eighth Beidou-2 satellite was launched from Xichang Satellite Launch Center in April 2011, with another 24 satellites expected. An emphasis was placed on system survivability, division of military and civilian bandwidth usage, laser ranging, and integration of micro-electro-mechanical system (MEMS) technology.\(^\text{120}\) The first launch of a third-generation Beidou satellite took place in 2017 from Xichang Satellite Launch Center. The Tianhui mapping satellites augment the Beidou system. The PLA-managed China Tianhui Satellite Center directs operations and is located in Beijing’s Xibeiwang township.\(^\text{121}\)

\(^{119}\) For example, Unit 32020 appears to have cooperated with Wuhan University on the Luojia-1 satellite program. The satellite is a prototype for a future 60-80 earth observation satellite constellation. Luojia 1 features an imager with 100-meter ground resolution. See Xintiandi, “Luojia-1-01 On-Orbit Evaluation Meeting and Night Illumination Remote Sensing Application Research Meeting Convene” (珞珈一号 01 星在轨测试评审会暨夜光遥感应用研讨会召开), July 10, 2018. http://www.sohu.com/a/240202947_650579. For reference to Unit 32030 cooperation with Wuhan University and responsibility for “Space Information Support” (空天信息保障), see “Academicians and Experts Collaborate to Construct the Military-Civil Fusion Laboratory of Aerospace Information” (院士专家共谋空天信息军民融合实验室建设), Wuhan University Collaborative Innovation Center of Geospatial Technology(地球空间信息技术协同创新中心) website, December 6, 2017. http://innogst.whu.edu.cn/newsnoticedetail.jsp?id=y0fjrlwv5j (link no longer active).

\(^{120}\) Key engineers included Liu Jiyu, a leading engineer from the Wuhan University of Survey and Mapping Technology. See University Network, “Liu Jiyu” [刘基余], November 2009. http://www.daxue1g.cn/fengyunrenwu/200911/4570.html.

Satellite Communications and Data Relay

Satellite communications (SATCOM) enable beyond-line-of-sight connectivity between joint commanders and subordinate units, and between operational units. SATCOM will become particularly important as the PLA operates farther from China’s borders. Since the launch of China’s first experimental communications satellite in January 1984 and the first operational system in March 1988, the country’s SATCOM capacity has grown in sophistication. Before the development and launch of dedicated military communications satellites, the PLA most likely leased civilian transponders operating in the C- and Ku-bands, such as SinoSat and ChinaSat. The PLA likely continues to lease transponder space, but this cannot be confirmed at the current time.

The PLASSF Space Systems Department develops operational and technical requirements for dedicated military communications satellites, such as the Fenghuo and Shentong systems. Fenghuo-1 (ChinaSat-22) was launched in January 2000 and functioned as the PLA’s first dedicated military communications satellite. Weighing 2,300 kilograms (kg) and designed to operate for eight years, Fenghuo-2 (ChinaSat-22A) was launched in September 2006. Shentong-1 (ChinaSat-20), was launched in November 2003, and is said to incorporate steerable spot beams operating in the Ku-band. Follow-on satellites were launched from Xichang in 2010, 2015, and January 2018. Since 2017, China also has carried out verification testing of a wideband (Ku-band) communications satellite. The SJ-20 satellite was launched from Wenchang on an LM-5 in December 2019, and validated a new-generation communications satellite bus, the DFH-5. The DFH-5 is China’s heaviest satellite to date. The same platforms have been used for testing of laser communications and electronic propulsion.

The PLASSF Space Systems Department manages the PLA’s SATCOM network. A new base command, notionally designated Base 37, was established in 2017 in the Beijing suburb of Mentougou. To expand the scope of its communications satellite architecture, China has fielded

122 Sun Jiadong is said to have played a leading role in the Fenghuo satellite. The chief designer of the Fenghuo is said to be Peng Shoucheng [彭守诚]. Peng has a background in the 504th Research Institute and has a background in electronic reconnaissance. The chief designer of the Shentong-1 was Wang Jiasheng [王家胜]. Born in 1953, Wang served as deputy chief designer of the DFH-3 COMSAT and chief designer of the Tianlian-1 data relay satellite. For reference to the January 2018 launch, see https://www.nasaspaceflight.com/2019/01/long-march-3b-lofts-chinasat-2d/.
124 Base 37 may carry a military unit cover designation of 32039. The base headquarters appears to be located in the compound housing of the former GSD Satellite Communications Command (Unit 61096). In 2017 reporting, Huang Huiming (黄惠明) was cited as director and Lu Guiqi is political commissar (鲁贵齐). Huang Huiming previously directed the GAD Data Relay Control and Management Center (总装备部中继卫星控制管理中心) in the 2012 timeframe. Among various sources, see “Mentougou District and Troops Stationed in the District Discuss Promoting The Common Development of Both” (门头沟区与驻区部队座谈促进双方共同发展), (京西时报), June 6, 2017.
a data relay capability. Operations are directed by the PLASSF Data Relay Satellite Control Center. While the exact hierarchy is unclear, the Data Relay Control Center may be subordinate to the Space Control Center.125 China’s first-generation data relay satellite, the Tianlian-1, was launched in April 2008 and a second was launched in July 2011. Theoretically, the satellites, using a basic DFH-3 bus, support the crewed space program. The satellites also could allow sensors to operate beyond line of sight of ground stations in China.126

Meteorology, Oceanography, and Space Weather

The PLASSF also manages military meteorological satellite data and oversees a specialized unit responsible for space weather analysis and forecasting.127 These conditions can influence the performance and reliability of space-borne and ground-based systems and can endanger human life or health. These conditions can cause disruptions of satellite operations, communications, radar, navigation, high-altitude crewed flight, and electrical power distribution. Since its inception in 1988, China’s Fengyun (FY) weather satellite program began with Chinese Premier Zhou Enlai’s 1970 approval of a CMC proposal to initiate R&D on meteorological satellites.128 With the launch of the first FY-1A in 1988, China became the third country to launch its own meteorological satellites. Nominally administered by the China Meteorological Administration (CMA), the FY series appear to be roughly analogous to those associated with the U.S Defense Meteorological Satellite Program. The FY-4, equipped with space weather sensors, is China’s most advanced space asset providing meteorological support to PLA and other users. As a dual-use asset, FY satellite requirements appear to have been developed by both the PLASSF and CMA, although their respective responsibilities remain unknown. The system also could provide measurement and signature intelligence data for PLA targeting.129 The PLASSF has launched at least 16 FY satellites.

Oceanographic satellites, like meteorological satellites, support military operations. Oceanographic satellites are useful for disaster warning, recovery, and response, support for fishing, and exploitation of maritime resources, as well as for military operations. Multispectral sensors may be able to detect ships at sea. The Haiyang (HY) series of satellites was first launched in 2002. An initial follow-on variant, the HY-2, was launched in 2009, with subsequent launches expected in 2012, 2015, and 2019. Requirements were developed by the State Oceanic Administration, presumably with PLA input. HY satellites, integrating EO and other sensors, are mainly used for monitoring watercolor, water environment, and temperatures. HY-2 integrates microwave technology to detect sea surface wind field, sea surface height, and sea surface temperature. R&D on a more advanced ocean monitoring system incorporating SAR technology, the HY-3, is well underway. One study noted that the FY-3 includes a prototype package intended to support other sensors, such as OTH radar systems, to compensate for sea clutter when tracking aircraft carriers and other moving targets at sea. Greater resolution enables more precise targeting.

In short, Fengyun and Haiyang satellites collect and provide strategic weather and oceanographic data for civilian and military purposes. An accurate assessment of current and future weather conditions, such as cloud cover, atmospheric moisture, winds, temperature, and ocean currents, is critical for a range of military operations. Weather satellites can measure electromagnetic conditions in the ionosphere that could affect OTH radar and communication systems. They also can provide militarily useful data associated with complex maritime environments and terrains, including observation of targets under camouflage or perhaps even underground. Meteorological and hydrographic satellites would facilitate PLA operations at sea at increasingly long ranges.

Deep Space Operations

The PLA and its civilian counterparts are moving beyond Earth’s orbit and into deep space. PLA ambitions in deep space are intimately linked with China’s lunar program. The China National Space Administration (CNSA) administers China’s lunar exploration program. The former PLA Commission of Science, Technology, and Industry for National Defense began detailed planning in 1998. By 2004, the State Council and CCP Central Committee directed the formation of a Lunar Exploration Project Leading Small Group to coordinate efforts across the bureaucracy. In 2013, China became the first space power to land on the moon since the Soviet Union’s mission in 1976. China’s various motivations include mining of helium-3 as a replacement for fossil fuels and solar energy.

130 Oceanographic monitoring is a focus area within the 863 Program, specifically the maritime area [海洋领域]. Also see China Great Wall Industry Corporation, “China’s Three-Dimensional Oceanographic System.” http://www.cgwic.com/In-OrbitDelivery/RemoteSensingSatellite/SEA.html.

power. Four lunar exploration spacecraft—designated Chang’e—have been launched to date.\(^{133}\) In December 2018, the Chang’e-4 mission deployed an initial lunar rover that explored the far side of the moon. The mission also entered a “parking orbit” at Lagrangian Point-2 on the moon’s far side.\(^{134}\) China seeks to lead internationally in lunar research, also investing in Mars and asteroid exploration. By 2020, China intends to launch its first Mars exploration vehicle that will land on the surface of the planet. A future mission will bring back samples from Mars.\(^{135}\)

The direct benefits to the PLA of the lunar exploration program, including activities on the far side of the moon, are unclear. However, the PLA manages significant components, including space launch, tracking and control, and benefits from the scientific research stemming from investments into the program. The CMC Equipment Development Department oversees an expert working group for validating a manned lunar landing program.\(^{136}\) As part of its lunar exploration program, China has demonstrated critical military capabilities in space, such as proximity operations and loitering.

In support of the lunar exploration and other programs, the PLA maintains a dedicated deep space tracking and communications network. Deep space tracking and communications stations are located in Kashgar, Kunming, Beijing, Qingdao, and Jiamusi. Overseas stations are in Namibia and Argentina.\(^{137}\) The PLA’s deep space surveillance system is augmented by very-long-baseline

interferometry sites controlled by the China Academy of Sciences.138 Little if any information is available regarding jamming capabilities in deep space.

\textbf{Current and Future Kinetic and Non-Kinetic Counterspace Operations}

China has an operational counterspace capability that will evolve through 2020 and out to 2035. These capabilities include antisatellite KKV and space electronic countermeasures. The former GAD and China Aerospace Science and Industry Corporation (CASIC) demonstrated a space intercept KKV in January 2007. According to U.S. government reporting, China allegedly has military units that have begun training with antisatellite missiles. While speculative, one possibility is that the PLA Rocket Force, given its synergistic relationship with the PLASSF, has been assigned space intercept as a secondary mission.

On the non-kinetic side, the PLA has an operational ground-based satellite electronic countermeasures (ECM) capability designed to disrupt adversary use of SATCOM, navigation, SAR, missile early warning, and other satellites through use of jamming.139 The PLA initially acquired ground-based satellite jammers from Ukraine in the late 1990s and has indigenously developed satellite ECM since then. The PLA is capable of carrying out ECM to disrupt, deny, deceive, or degrade space services. Jamming prevents users from receiving intended signals and can be accomplished by attacking uplinks and downlinks. The PLA and defense industry are developing and deploying jammers capable of targeting satellite communications over a large range of frequencies, including dedicated military communication bands. The PLASSF also has advanced cyber capabilities that could be applied in parallel with counterspace operations. While the PLA capabilities have improved, the U.S. is assumed to maintain a lead in counterspace.

China also is carrying out R&D and testing on potential space-based counterspace systems. The PLASSF and defense industry have carried out advanced satellite maneuvers and are likely testing orbital technologies that could be applied to counterspace operations. For example, in 2013, the Shiyan-7 (SY-7) released an object that performed maneuvers and tested a telerobotic arm. In June 2016, the PLASSF launched the Aolong-1 spacecraft—which included a robotic arm—on a space

The PLASSF Network Systems Department probably oversees satellite jamming operations, though this cannot be confirmed at the current time. At a minimum, the PLASSF Network Systems Department appears to support the PLA space mission.\footnote{The Network Systems Department is led by a commander and a political commissar. Both carry TC deputy leader grades. Deputy commanders and deputy political commissar of the Network Systems Department (and/or chief of staff and director of the Political Work Department) presumably carry corps leader grades. Senior PLASSF Network Systems Department officers presumably exercise at least administrative authority over corps leader, corps deputy leader, division leader, and division deputy leader-grade units previously subordinate to the former GSD Third and Fourth Departments. Selected divisions under former Military Region, PLAN, and PLAAF technical reconnaissance bureaus may have been integrated into at least six corps leader or corps deputy leader-grade base commands. Corps leader-grade base leaders would report to officers at the next-higher grade, in this case directly to the PLASSF chief of staff and/or PLASSF deputy commander overseeing the Network Systems Department. While administratively subordinate to the PLASSF, five of these base commands could provide national-level ISR support to TCs during peacetime. They could be formally assigned to TC operational control during a contingency. As a corps leader-grade organization, the GSD Third Department consisted of administrative third-level departments, 12 operational bureaus, a computing center, and three research institutes. GSD Third Department operational bureaus carried a division leader grade (or possibly corps deputy leader grade in some cases) and were separate and distinct from technical reconnaissance bureaus under the PLA’s then seven military regions, the PLAN, and PLAAF.}

The PLASSF Network Systems Department probably oversees satellite jamming operations, though this cannot be confirmed at the current time. At a minimum, the PLASSF Network Systems Department appears to support the PLA space mission.\footnote{The Network Systems Department is led by a commander and a political commissar. Both carry TC deputy leader grades. Deputy commanders and deputy political commissar of the Network Systems Department (and/or chief of staff and director of the Political Work Department) presumably carry corps leader grades. Senior PLASSF Network Systems Department officers presumably exercise at least administrative authority over corps leader, corps deputy leader, division leader, and division deputy leader-grade units previously subordinate to the former GSD Third and Fourth Departments. Selected divisions under former Military Region, PLAN, and PLAAF technical reconnaissance bureaus may have been integrated into at least six corps leader or corps deputy leader-grade base commands. Corps leader-grade base leaders would report to officers at the next-higher grade, in this case directly to the PLASSF chief of staff and/or PLASSF deputy commander overseeing the Network Systems Department. While administratively subordinate to the PLASSF, five of these base commands could provide national-level ISR support to TCs during peacetime. They could be formally assigned to TC operational control during a contingency. As a corps leader-grade organization, the GSD Third Department consisted of administrative third-level departments, 12 operational bureaus, a computing center, and three research institutes. GSD Third Department operational bureaus carried a division leader grade (or possibly corps deputy leader grade in some cases) and were separate and distinct from technical reconnaissance bureaus under the PLA’s then seven military regions, the PLAN, and PLAAF.}

The PLASSF Network Systems Department probably oversees satellite jamming operations, though this cannot be confirmed at the current time. At a minimum, the PLASSF Network Systems Department appears to support the PLA space mission.\footnote{The Network Systems Department is led by a commander and a political commissar. Both carry TC deputy leader grades. Deputy commanders and deputy political commissar of the Network Systems Department (and/or chief of staff and director of the Political Work Department) presumably carry corps leader grades. Senior PLASSF Network Systems Department officers presumably exercise at least administrative authority over corps leader, corps deputy leader, division leader, and division deputy leader-grade units previously subordinate to the former GSD Third and Fourth Departments. Selected divisions under former Military Region, PLAN, and PLAAF technical reconnaissance bureaus may have been integrated into at least six corps leader or corps deputy leader-grade base commands. Corps leader-grade base leaders would report to officers at the next-higher grade, in this case directly to the PLASSF chief of staff and/or PLASSF deputy commander overseeing the Network Systems Department. While administratively subordinate to the PLASSF, five of these base commands could provide national-level ISR support to TCs during peacetime. They could be formally assigned to TC operational control during a contingency. As a corps leader-grade organization, the GSD Third Department consisted of administrative third-level departments, 12 operational bureaus, a computing center, and three research institutes. GSD Third Department operational bureaus carried a division leader grade (or possibly corps deputy leader grade in some cases) and were separate and distinct from technical reconnaissance bureaus under the PLA’s then seven military regions, the PLAN, and PLAAF.}

The PLASSF Network Systems Department probably oversees satellite jamming operations, though this cannot be confirmed at the current time. At a minimum, the PLASSF Network Systems Department appears to support the PLA space mission.\footnote{The Network Systems Department is led by a commander and a political commissar. Both carry TC deputy leader grades. Deputy commanders and deputy political commissar of the Network Systems Department (and/or chief of staff and director of the Political Work Department) presumably carry corps leader grades. Senior PLASSF Network Systems Department officers presumably exercise at least administrative authority over corps leader, corps deputy leader, division leader, and division deputy leader-grade units previously subordinate to the former GSD Third and Fourth Departments. Selected divisions under former Military Region, PLAN, and PLAAF technical reconnaissance bureaus may have been integrated into at least six corps leader or corps deputy leader-grade base commands. Corps leader-grade base leaders would report to officers at the next-higher grade, in this case directly to the PLASSF chief of staff and/or PLASSF deputy commander overseeing the Network Systems Department. While administratively subordinate to the PLASSF, five of these base commands could provide national-level ISR support to TCs during peacetime. They could be formally assigned to TC operational control during a contingency. As a corps leader-grade organization, the GSD Third Department consisted of administrative third-level departments, 12 operational bureaus, a computing center, and three research institutes. GSD Third Department operational bureaus carried a division leader grade (or possibly corps deputy leader grade in some cases) and were separate and distinct from technical reconnaissance bureaus under the PLA’s then seven military regions, the PLAN, and PLAAF.}

The PLASSF Network Systems Department probably oversees satellite jamming operations, though this cannot be confirmed at the current time. At a minimum, the PLASSF Network Systems Department appears to support the PLA space mission.\footnote{The Network Systems Department is led by a commander and a political commissar. Both carry TC deputy leader grades. Deputy commanders and deputy political commissar of the Network Systems Department (and/or chief of staff and director of the Political Work Department) presumably carry corps leader grades. Senior PLASSF Network Systems Department officers presumably exercise at least administrative authority over corps leader, corps deputy leader, division leader, and division deputy leader-grade units previously subordinate to the former GSD Third and Fourth Departments. Selected divisions under former Military Region, PLAN, and PLAAF technical reconnaissance bureaus may have been integrated into at least six corps leader or corps deputy leader-grade base commands. Corps leader-grade base leaders would report to officers at the next-higher grade, in this case directly to the PLASSF chief of staff and/or PLASSF deputy commander overseeing the Network Systems Department. While administratively subordinate to the PLASSF, five of these base commands could provide national-level ISR support to TCs during peacetime. They could be formally assigned to TC operational control during a contingency. As a corps leader-grade organization, the GSD Third Department consisted of administrative third-level departments, 12 operational bureaus, a computing center, and three research institutes. GSD Third Department operational bureaus carried a division leader grade (or possibly corps deputy leader grade in some cases) and were separate and distinct from technical reconnaissance bureaus under the PLA’s then seven military regions, the PLAN, and PLAAF.}
monitoring facilities in Changchun (Jilin Province), Fuzhou and Xiamen (Fujian Province), Hangzhou (Zhejiang Province), Guangzhou (Guangdong Province), Kunming (Yunnan Province), and in Xinjiang.

The PLASSF absorbed at least two strategic ECM brigades and a satellite ECM command previously subordinate to the GSD Fourth Department. The satellite ECM command likely oversees the development and operation of capabilities designed to disrupt adversary use of SATCOM, navigation, SAR, and other satellites. The satellite ECM command is headquartered on Beiqing Road in Beijing’s northern suburbs. A possible new base command consolidating strategic ECM units may have been established in Henan’s Kaifeng City. The PLASSF also incorporated a unit previously subordinate to the GAD that is responsible for directed energy testing.

Today, the PLA can carry out both kinetic and non-kinetic counterspace activities. Few details are known about operational infrastructure for ground-based kinetic counterspace operations. However, looking out to 2035, and as the effects of the ongoing reform and reorganization bear fruit, PLASSF capacity for counterspace operations is likely to advance significantly with the consolidation of RD&A, training, and operations under a single integrated command. PLASSF-managed defense industrial development of key technologies over the next 15 years—such as active millimeter-wave and imaging infrared sensors, artificial intelligence, and automated target recognition—are likely to provide a further boost to the PLA’s operational capabilities. Such advances may erode traditional advantages the United States has enjoyed in space.

Training
The PLASSF has emphasized education and training, although little information is available regarding integration into the PLA’s annual training cycle. Force-wide training plans likely are managed by the PLASSF Staff Department Training Bureau or perhaps a similar bureau within the Space Systems Department. For example, the PLASSF has carried out joint reconnaissance and counter-reconnaissance training and mobility training, and it has participated in command

146 Military cover designations associated with the Satellite ECM Command (电子对抗卫星总站) include 61276, 61651, 61541, 61764 (Hainan), and more recently 32032.

147 Among various sources, see Marcus Clay, “Supporting the Infinitive Battlefield,” China Aerospace Studies Institute, 2019, 42–43. The satellite ECM command may carry a designation of 61276部队, 61541部队, or 32032部队. A subordinate unit is located on Hainan Island and appears to have either operational or experimental satellite jamming responsibilities. One indication of the unit having satellite jamming responsibilities is the number of articles published by its members. See, for example, Li Bin and Jin Guodong, “Analysis on GPS Jamming” [浅析GPS 干扰技术], Electronic Countermeasures, January 2009, 39–42; Jin Guodong and Li Suoku, “On Broadband Communications Satellites [宽带卫星通信探析], Electro-Optical Systems, April 2008, 16–31; Zhang Ming and Li Suoku, “Space Information Warfare and International Space Law [空间信息作战与国际空间法], Armament Command and Technology Academy Journal, February 2003; Xiang Hanfei, Li Suoku, and Han Honglin, “Analysis of GPS System Countermeasures,” [GPS 系统对抗若干分析], Tracking and Communications, October 2008.
center exercises.148 PLASSF units also have carried out training in contingency response and integrating into a TC joint command and control structure.149 A three-day field training exercise included integrated command and control, execution of contingency combat operations, wartime political work, and maintaining communications support.150 During Stride-2017 exercises, the PLASSF is noted to have provided joint reconnaissance support during field training.151 In March 2019, the PLASSF completed an unnamed exercise that focused on enemy combat methods and countermeasures.152 The U.S. Air Force indicates that “China has military units that have begun training with anti-satellite missiles,” although no details are offered.153 At least one PLASSF test and training base has increased emphasis on combat training.154 PLASSF units also have trained in restoring command communications that have been cut off.155 The PLA Space Engineering University and Information Engineering University are both military training institutions directly subordinate to the PLASSF.156 The PLA Space Engineering University

149 See Ma Wei (马瑰) and Wang Bin (王斌), “PLASSF Base Prepares for Battle: A Look at Your Expedition” (战略支援部队某基地练兵备战: 望着你出征的背影), \textit{PLA Daily}, February 20, 2018. \url{http://www.xinhuanet.com/mil/2018-02/20/c_129814052.htm}.

153 See National Air and Space Intelligence Center, \textit{Competing in Space}, December 2018. \url{https://media.defense.gov/2019/Jan/16/2002080386/1-1/1/190115-F-NV711-0002.PDF}.

155 Lu Jun (路俊), “PLASSF Communications Support Training in Complex Environment” (战略支援部队某部一复杂环境演练通信保障), \textit{PLA Daily}, January 5, 2018. \url{http://www.81.cn/jjfbmap/content/2018-01/05/content_196236.htm}.

houses facilities, including a space simulation center, space testing center, and space measure and control station, and functions as the PLASSF’s command college and noncommissioned officer academy. PLASSF space-related participation in military exercises with international partners has not been noted.

SECTION THREE
SPACE/COUNTERSPACE FORCE MODERNIZATION

The CMC oversees a well-established structure and process for PLA weapons and space systems RD&A. The CMC/EDD and CMC S&T Committee develop and oversee broad RD&A policies and regulations, advise on technical solutions to satisfy operational requirements, and oversee formal coordination mechanisms between the PLA and the defense industrial system. Based on CMC-approved mid- to long-term strategic guidelines, the CMC/EDD, like its predecessor, the GAD, coordinates the drafting of a PLA Equipment Development Strategy. The strategy establishes PLA-wide priorities for long-term (e.g., 20–30 years), mid-term (e.g., 10 years), and short-term (e.g., five years) force modernization investments. The strategy is reviewed every five years. Within this process, the PLA Army, Navy, Air Force, Rocket Force, and Strategic Support Force likely compete within a set budget. The CMC S&T Committee, which functions as the senior-level defense technology advisory group, is supported by at least 20 national-level technology working groups that advise on defense technology policy and priorities.158 Civilian space organizations, such as SASTIND and defense industrial enterprises, support the PLA in the development of technical requirements and engineering R&D.

Research, Development, and Acquisition System

Under CMC/EDD and CMC S&T Committee guidelines, end users, such as the PLA Army (PLAA), PLA Navy (PLAN), PLA Air Force (PLAAF), PLA Rocket Force (PLARF), and PLA Strategic Support Force (PLASSF) manage weapons and space systems RD&A programs. More specifically, PLAA, PLAN, PLAAF, and PLARF equipment departments manage RD&A programs in close coordination with the civilian defense S&T and defense industry community.159 The consolidation of space-related RD&A management under a single end user—the PLASSF—probably has improved the efficiency of the requirements development process, program validation, engineering R&D, and integration of military space systems.

As a reflection of China’s military-civil fusion policy, PLA end users work closely with SASTIND and defense industrial enterprises in managing space systems RD&A. RD&A generally consists of five phases: (1) preliminary research, (2) program validation, (3) concept design, (4) engineering

159 For the PLASSF, RD&A is handled by two second-level departments: The Space Systems Department and the Network Systems Department. For the PLA Navy, Air Force, and Rocket Force, RD&A is managed by their respective equipment departments with support from dedicated research academies.
R&D, (5) design finalization, and (6) low-rate/full production. Each phase presumably requires individual contracts between the end user and civilian service provider.\footnote{160}

Preliminary Research: PLA-funded preliminary research (预先研究) invests resources into the development of advanced technologies that could be applied to multiple weapons system programs or to overcome a bottleneck on a specific program. In addition to national-level initiatives, such as the 863 Program, end users such as the PLASSF Systems Department probably oversee a dedicated office responsible for preliminary research planning, awarding grants for studies, and disseminating research results. PLA research institutes and universities, defense industrial research centers, and civilian universities can compete for preliminary research projects.\footnote{161}

Concept/Program Validation: During the concept program validation (方案论证) phase, end users develop detailed operational and technical requirement documentation for CMC/State Council approval. Validation involves the development of mockups and assessment of alternatives, along with cost and operational effectiveness assessments. Operational and technical requirements for major weapons systems are validated by a special committee consisting of representatives of the CMC and State Council. It is unclear if this committee evaluates military programs, civilian programs, or both. If approved, new programs are included in the five-year plan (FYP). In some cases, a program may be approved but not included in the FYP. In this case, an end user would be expected to fund R&D from its own budget. PLA Navy, Air Force, and Rocket Force Equipment Research Academies, as well as the PLASSF counterparts, presumably are responsible for overseeing program validation. The civilian defense industry contributes to the process through detailed feasibility studies. The validation process also includes the development of a program budget. The validation phase concludes with a CMC/State Council committee approval of operational and technical requirements, referred to as a Tactical Technology Index.

Engineering R&D: Engineering R&D involves the management of a complex supply chain overseen by a dual command system that divides technical and administrative aspects of a program. SASTIND functions as a coordinating body for defense industrial enterprises supporting military R&D, manufacturing, and follow-on support. Among the 97 central state-owned enterprises (SOEs) listed on the State-Owned Assets Supervision and Administration Commission (SASAC, 国有资产管理委员会) website, the first ten are considered defense industrial enterprises. However,

\footnote{161} Before the reorganization, the GAD Comprehensive Planning Department oversaw a Preliminary Research Bureau (总装综合计划部预研局). GAD also managed a Preliminary Research Management Center (总装备部预研管理中心).
most engineering R&D programs are assigned to one of ten central defense industrial enterprises administered by SASAC.

A central defense industrial enterprise, a specific business division, or a research academy is assigned systems integration responsibilities. Research academies function as second-tier units under defense industrial enterprises. In the case of large national-level projects that cut across two or more central defense industrial enterprises, such as the lunar exploration program, SASTIND may host an engineering office that exercises dual command responsibilities.

Technical aspects of a space program are the responsibility of the chief designer and his/her design team. The chief designer, deputy chief designers, and directing designers bridge a complex network of research institutes and manufacturers. Deputy chief designers and directing designers are responsible for subsystems, assemblies, and manufacturing/final assembly. A chief designer may be housed within an academy’s design department. The department hosts the chief designer, who oversees a dedicated office to coordinate with research institutes, other academies, and program managers. Deputy chief designers are often selected from research institutes or factories, rather than within a design department. Engineering R&D includes a test prototype phase (试样阶段). Design and program management teams work closely together with end user acquisition offices to ensure an economy of effort, timely production, and cost-effective use of resources. PLA end users manage industrial representative offices to monitor aspects of engineering R&D to ensure quality control.162

Design Finalization: During the design finalization phase, the CMC, State Council, end users, and industrial program managers evaluate whether or not a satellite or launch vehicle meets operational and technical requirements. Testing is carried out and evaluated in accordance with operational and technical requirements, including the Tactical Technology Index and R&D Mission Document. End user Equipment Research Academies appear to play a role in the design finalization process. After successfully completing testing, the system is reviewed by two certification boards. The program management team produces a systems R&D report for review by a senior end user committee. If approved, the system is reviewed by a first-level Design Finalization Committee comprising members of the State Council (Premier or Vice Premier) and CMC.163

163 Among various sources outlining the design finalization process, see *Military Products Design Finalization Process and Requirements* (军工产品定型程序和要求), PLA Directive GJB-1362A (2007). Until 1979, the committee was known as the Military Product Design Finalization Leading Small Group (国务院、中央军委军工产品定型工作领导小组). The first-level design finalization committee, which maintains a standing office, may also be known as the Central Special Committee. Senior PLA Navy authorities comprise a second-level design finalization committee (二级定委). According to one corporate source, the certification process proceeds through a series of reviews: (1) Second-Level Design Finalization Review Committee (二级定委会审查会); (2) Second-Level
Space Requirements Development and Program Management

The PLASSF supports the CMC in the development of technical and operational requirements for space systems. The requirements development process likely is informed by the CMC Office for Strategic Planning (former GSD Strategic Planning Department), which may conduct a long-term analysis of the international security environment and space-related trends. The office also appears responsible for organizational transformation, strategic resource allocation, and departmental and “domain” coordination (e.g., between GSD and GAD). Although speculative, the office may play a central role in force planning for future space operations.¹⁶⁴

The process for how the PLASSF develops operational requirements remains opaque. The PLASSF Space Systems Department develops requirements for and manages joint military use of ISR, communications, navigation, mapping, metrological, and oceanographic space systems. The Space Systems Department Equipment Department Program Management Center most likely oversees key PLASSF space-related RD&A initiatives.¹⁶⁵ Other organizations likely supporting requirements development and RD&A management include the PLASSF Space Equipment Integrated Technology R&D Center, Space Engineering Research Institute (航天系统部航天工程研究所), Beijing Institute of Systems Engineering, Beijing Institute of Remote Sensing Information, and the Beijing Institute of Tracking and Telecommunications Technology. The Beijing Institute of Remote Sensing Information, previously subordinate to the GSD Intelligence Department Space Reconnaissance Bureau, appears to be primarily focused on developing EO and SAR remote sensing requirements. The Beijing Institute of Tracking and Telecommunications Technology is a critical player in the design of tracking and control stations, and has been involved in international projects in Venezuela and Nigeria.¹⁶⁶

¹⁶⁵ For reference to the PLASSF Space Systems Department Equipment Department Program Management Center (航天系统部装备部项目管理中心), see http://my.yingjiesheng.com/xjh-003-057-033.html.
¹⁶⁶ The military unit cover designator of the Beijing Institute of Remote Sensing Information may be 61646. Its former GSD alter ego, the GSD Space Reconnaissance Bureau (总参航天侦察局) managed an R&D center directed by Zhou Zhixin [周志鑫]. For reference to Zhou, see [杜善义院士、曲久辉、栾恩杰和周志鑫校友获2009年度何梁何利奖], Harbin Institute of Technology Today. http://today.hit.edu.cn/articles/2009/11-11/1115372591.htm. For reference to Zhou with the Second Department’s Space Remote Sensing, see http://www.ciomp.cas.cn/jgsz/kxyt/kkomt/sysgk_kkomt/xxswy_kkomt/. For reference to the BITTT and
Defense Industry and Space Systems Engineering

The CMC and PLASSF rely upon state-owned defense industrial establishments for research, development, and manufacturing of space systems. Administrative oversight of China’s defense industry is exercised by the Ministry of Industry and Information Technology (MIIT) and SASTIND. Formed in summer 2008, SASTIND is administratively in charge of defense industrial enterprises that support military-related R&D, manufacturing, and follow-on support. SASTIND seeks to foster greater competition within the defense industry to better meet the requirements of the PLA, as well as encourage greater military-civil fusion. SASTIND provides policy guidance to at least ten state-owned defense industrial enterprise groups responsible for space and missiles, electronics, aviation, nuclear-related products, shipbuilding, and other sectors.

The two large SOEs that make up the space and missile industry include CASC and CASIC. CASC and CASIC receive government subsidies, although efforts have been made to introduce market-based incentives. The aerospace industry enjoys a historical legacy with a proven record of success, well-established channels and methods for overcoming technological bottlenecks, and the prestige needed to recruit some of China’s best and brightest.

Both CASC and CASIC are organized in a manner similar to U.S. defense corporations, with a corporate-level structure and various business divisions, referred to as academies. Like U.S. defense industrial business divisions, each academy focuses on a core competency, such as medium-range ballistic missiles, short-range ballistic missiles, intercontinental-range ballistic missiles and satellite launch vehicles, cruise missiles, and satellites. While U.S. defense companies tend to specialize further within a business division, CASC/CASIC academies are organized into R&D and/or design departments; research institutes focusing on specific subsystems, subassemblies, components, or materials; and then testing and manufacturing facilities. Each academy is accountable for profit and loss and includes an information collection and dissemination institute that diffuses technical information.167

China Aerospace Science and Technology Corporation

CASC develops and manufactures space launch vehicles, strategic ballistic missiles, satellites, and other space flight vehicles.168 CASC employs more than 100,000 engineers, technicians, and workers. Its functional business divisions specialize in ballistic missiles and space launch vehicles, large solid-rocket motors, liquid-fueled engines, satellites, and related subassemblies and components. A new division was established in 2008 that consolidated CASC institutes and

factories specializing in inertial measurement units, telemetry, and missile-related microelectronics, such as the high-performance digital signal processors and field programmable gate arrays that are needed for long-range precision strikes at high speeds and extreme temperature conditions. The CASC S&T Committee advises the State Council, CMC, and CASC leadership on space technology issues. CASC’s dedicated export management and international contracting entity is China Great Wall Industry Corporation (CGWIC).

China Aerospace Science and Industry Corporation
The second major industrial enterprise engaged in space-related R&D and production is CASIC. CASIC employs more than 100,000 engineers, technicians, and workers within its headquarters, academies or business divisions, subordinate design departments, research institutes, factories, and commercial enterprises. CASIC specializes in conventional defense and aerospace systems, including tactical ballistic missiles, antiship and land attack cruise missiles, air defense missile systems, direct ascent ASAT interceptors, operationally responsive tactical microsatellites, and associated tactical satellite launch vehicles. While academics and subordinate institutes appear to conduct independent international business transactions, CASIC’s principle export management enterprise is the China Precision Machinery Import-Export Company (CPMIEC).

Launch Vehicle RD&A
The PLASSF’s space launch infrastructure depends upon a well-established and increasingly reliable family of launch systems to deploy payloads into space for military and civilian users. The CASC First Academy and CASC Eighth Academy are leading suppliers of liquid-fueled launch vehicles. To date, seven basic series of Long March (LM) liquid-fueled launch vehicles deliver payloads to orbits at varying altitudes and inclinations around the earth. The CASC First Academy, also known as the China Academy of Launch Technology (CALT), is China’s largest entity involved in the development and manufacturing of space launch vehicles and related ballistic missile systems. CALT is also a leading organization in China’s crewed space program. Launch vehicle systems engineering responsibilities reside within the First Academy First Design Department. Various research institutes specialize in guidance, navigation, and control subsystems, reentry vehicles, and launch systems. The 211 Factory in Nanyuan is the academy’s primary

169 For background on CASIC, see http://www.casic.com/n189298/n189314/index.html. The CEO/president/director of CASIC (航天科工集团) is Gao Hongwei(b. 1956). He was assigned in 2013. He previously directed the CASIC Third Academy, served as CASIC deputy director, and directed the former 066 Base (Sanjiang) in Hubei. He has roots in the Hongfeng Factory. Gao Hongwei is supported by six vice presidents.

170 For the most comprehensive background on China’s ballistic missile program, see John Lewis Wilson and Hua Di, “China’s Ballistic Missile Programs: Technologies, Strategies, Goals,” International Security 17:2 (Fall 1992). The LM launch vehicle family has roots in the country’s ballistic missile program, specifically the Dongfeng-4 (DF-4) and Dongfeng-5 (DF-5) ICBM systems. Based on a March 1965 CMC decision, formal design work on the two missile systems commenced in May 1966. By 1970, initial technical designs were completed. The first DF-5 prototype was assembled in May 1971, and tested from Base 20 on September 10, 1971. Its design was certified in 1973. Both the 211 and 7102 factories in Sichuan assembled prototypes for testing. The warhead design, however, was not completed until July 1986.
launch vehicle assembly plant. The Long March Machinery Factory (7102 Factory) in Sichuan may augment the 211 Factory in assembling launch vehicles.

Figure 2: Chinese Space Launch Vehicles

The launch vehicles depicted are representative of China’s launch capabilities. Additional light, medium, and heavy-lift vehicles are in development. China uses its light-lift vehicles to place small payloads into LEO and its medium lift to place larger satellites in MEO and smaller satellites in GEO. The LM-5 heavy-lift SLV supports launching crewed space station components to LEO and heavy payloads to GEO. The developmental LM-9 primarily will support missions to the Moon and Mars.

The CASC Eighth Academy, also known as the Shanghai Academy of Space Technology (SAST), also designs, develops, and assembles liquid-fueled LM-4 launch vehicles. SAST’s Eighth Design Department is responsible for overall design and systems engineering.

CALT and SAST rely upon a vast supply chain for subsystems and components. The CASC Sixth Academy, also known as the Academy of Space Propellant Technology (or 067 Base), is China’s primary organization engaged in research, development, and production of liquid-fueled engine systems. Among its more recent products are the YF-77 and YF-100, currently China’s most powerful liquid oxygen and kerosene rocket engines. The CASC Sixth Academy is also a key organization involved in the development of LM-5 engines.

The LM-2 series has been used for delivering both remote sensing and communications satellites from Jiuquan and Xichang Satellite Launch Centers. The LM-2F is China’s most powerful launch

171 Originally centered in the Qinling mountain range west of Xian, the CASC Sixth Academy employs around 10,000 people in four research institutes and one factory, and is now headquartered in Xian. For background on the CASC Sixth Academy, see China Aerospace Science and Technology Corporation, (航天推进技术研究院), September 26, 2011. http://www.spacechina.com/n25/n142/n152/n12989/n13957/c25220/content.html.
vehicle to date, able to boost more than 8,000 kg into LEO. Sharing the same first and second stages as the LM-2C, the LM-3 series integrates a cryogenic third stage that has been used for boosting heavier payloads into space from Xichang Satellite Launch Center.

Other launch vehicles include the LM-2D and LM-4 series, which have transported remote sensing, weather, and other payloads to SSO from Taiyuan Satellite Launch Center. The LM-2D has launched more than 40 payloads into both LEO and SSO from the Jiuquan Satellite Launch Center.172

Since 2008, China has been investing resources into a new generation of launch vehicles, including the LM-5, LM-6, LM-7, LM-8, and LM-9. The LM-5, first launched in November 2016, is designed to lift a 23+ ton payload to LEO, or a 14-ton payload into geosynchronous transfer orbit. The second LM-5 launch in July 2017 failed due to a first-stage engine problem. A CGWIC official noted that a follow-on launch is slated for late 2019.173 With R&D beginning in September 2009, SAST’s LM-6 is a smaller launch vehicle capable of boosting 500–1000 kg into orbit. The LM-7, first launched in 2016, is designed to place a 5.5-ton payload into SSO at an altitude of 700 km. The LM-8 is intended to be China’s first reusable launch vehicle.174

Solid-Fueled Propulsion Systems

Over the last 20 years, CASIC and CASC have invested resources into R&D and production of operationally responsive solid-fueled satellite launch systems. The CASIC Fourth Academy has designed and produced another family of other tactical solid-fueled launch vehicles. Established in 2002, the CASIC Fourth Academy specializes in design, development, and manufacturing of the DF-21 medium-range ballistic missile and associated variants, including the PLA’s first-generation antiship ballistic missile.175

The CASIC Fourth Academy developed the Kaituozhe (KT) small launch vehicle to serve the domestic and foreign market for boosting small and microsatellites with weights less than 100 kg into low-earth or sun-synchronous orbit. The developmental program is said to have begun in June 2000, with the third-stage motor successfully tested on February 25, 2001.176 Aerospace industry

175 The Fourth Design Department was formerly subordinate to the Second Academy, one of the few academies that has managed more than one subordinate design department.
reporting indicated that an initial test of the 1.4-meter diameter first-stage motor on September 15, 2002, failed to achieve the anticipated outcome.177

Development of a follow-on Kaituozhe launch vehicle centered upon a new 1.7-meter solid rocket motor. The KT-2 was a three- or four-stage launch vehicle designed for geosynchronous transfer orbit and polar orbit missions with an estimated payload capacity of 300 kg. Plans for a KT-2 were based upon the CASIC Sixth Academy’s ability to develop and produce a larger 1.7-meter diameter motor, presumably based on the foundation of the SpaB-17 perigee kick motor for communication satellite programs. The KT-2A planned to add external motors for lifting over 400 kg into polar orbit. The ultimate requirement appeared to be the deployment of a 500-kg payload to a 700-km orbit. The KT program appears to have been discontinued and succeeded by the Kuaizhou program, also designed and developed by the CASIC Fourth Academy’s Ninth Design Department. The Kaituozhe’s first flight took place in 2013 from Jiuquan.178 Subsequent launches took place in 2019 and 2020.179

The CASC First Academy designed a larger solid-fueled launch vehicle, the LM-11 launch vehicle. The main supplier of solid rocket motors is the CASIC Fourth Academy. The CASC Fourth Academy is developing large high-thrust solid rocket motors for delivering large payloads. Initial ground tests were conducted in 2009.180 A two-stage solid motor was successfully flight tested on September 25, 2010. While unconfirmed, a large high-thrust solid rocket motor with a diameter greater than two meters could serve as the basis for a new mobile intercontinental ballistic missile. Its first flight took place in 2015, and the first LM-11 sea launch took place in June 2019.181

177 The test involved the launch of the 35.8-kg KT-1PS microsatellite, manufactured by CASIC First Academy, from Taiyuan Satellite Launch Center into an intended 300-km altitude orbit. Tian Zhiqiang, [小型固体运载火箭], \textit{Space Exploration} [太空探索], October 2003. For background on the microsatellite payloads, see CASIC Satellite Technology Company, “KT-1PS/PS2/PS3 载荷星.” http://www.casic-sat.com.cn/operation5.asp. The satellite passed its final factory certification on August 24, 2002, approximately five weeks before launch. Gu Ti, “Kaituozhe: New Choice for Small Satellite Launches,” \textit{Aerospace China}, November 2002, 2. There are indications the KT-2 has been redesignated as the KT-1B.

178 Liang Jiqiu (梁纪秋; b. 1974) is with the CASIC Ninth Design Department and recruited by Hu Shengyun in August 2002 to serve as directing designer, and subsequently deputy chief designer, of a user interface program. Liang Jiqiu is cited in 2014 reporting as chief designer of the Kuaizhou small solid-fueled launch vehicle (快舟小型固体运载火箭). The Kuaizhou-2 was launched on November 21, 2014.

181 China Space News, “CASC Fourth Academy Achieves Four Breakthroughs within Two Years in New Motor R&D” [航天科技四院某新型发动机研制两年攻坚实现四大新突破], December 27, 2010. http://www.spacechina.com/xwzx_jcdt_Details.shtml?recno=72512. The program manager was Fourth Academy Deputy Director Wang Jinglin [王景林] and the chief designer was Gao Bo [高波], director of the CASC Fourth Academy’s Design Department. Also see Lu Jun (路俊) and Zou Weirong (邹维荣), “Commemorating Taiyuan
New-Generation Aerospace Flight Vehicles/Reusable Launch Vehicles

China’s defense industry is investing considerable resources into new modes of space launch, including transatmospheric and reusable launch vehicles. Theoretically, both would be capable of delivering payloads to LEO and returning to earth at less cost than single-use launch vehicles.\(^{182}\) Basic research and an assessment of alternative reusable launch vehicles was initiated in 1987 under the 863 Program in parallel with technical assessments of the crewed space program. In July 1989, the 863-204 Expert Group (863-204专家组) completed a feasibility assessment for a large reusable launch vehicle (大型运载火箭及天地往返运输系统).\(^{183}\) Among the various options was a space shuttle design.\(^{184}\) China allegedly is targeting 2030 for a two-stage-to-orbit reusable launch vehicle.\(^{185}\) A transatmospheric vehicle appears to be in the preliminary stage of R&D, including ground testing of propulsion systems, and notionally would leverage advanced propulsion technologies, such as a supersonic combustion ramjet (scramjet) or combined-cycle engines. The CASIC Third Academy 301st Institute (Beijing Institute of Aerospace Technology; 北京空天技术研究所) appears to be one of the leading design departments engaged in transatmospheric R&D. Established in 2012, the CASIC 301st Institute’s principle effort is the Tengyun Engineering (腾云工程) program.\(^{186}\) CASC also has reported intent to develop a nuclear-propelled space vehicle by 2040.\(^{187}\) As a final note, little information is available regarding RD&A of space-to-air vehicles, or space-to-ground weapons capable of directly engaging, defeating, or destroying a target.

Space Launch Center’s Maritime Launch Mission Team” (记太原卫星发射中心海上发射任务团队), PLA Daily, June 11, 2019. http://www.81.cn/jfjbmap/content/2019-06/11/content_235682.htm.

182 For general discussion of reusable launch vehicle R&D, see (我国将加强可重复天地往返运输系统研发), S&T Daily, September 24, 2013. http://www.nsfc.gov.cn/publish/portal0/tab446/info65565.htm.

183 Among various sources, see http://www.csaspace.org.cn/n2505504/n2505531/c2524224/content.html.

186 Among various sources, see CCTV, “New Generation of Reusable Space Flight Vehicle in R&D” (新一代天地往返飞行器“空天飞机”正在研制), March 6, 2018. http://m.news.cctv.com/2018/03/06/ARTIpsmrJVGPEsi1WxHA0ADL180306.shtml. For reference to ground testing of propulsion systems, see 付毅飞, (我国可重复使用天地往返飞行器), Xinhua, June 7, 2017. http://www.xinhuanet.com/science/2017/06/07/c_136830662.htm. As of 2018, Guan Chengqi (关成启) directed the CASIC 301st Institute. He previously served as deputy director of the Third Academy Third Design Department.

Satellite Systems RD&A
The CASC Fifth Academy, CASC Eighth Academy, and CASIC First Academy are lead systems integrators for satellite systems. Established in February 1968, the CASC Fifth Academy, or China Academy of Space Technology (CAST), is China’s primary organization engaged in satellite design, development, and manufacturing. Based in Beijing’s northwestern suburbs, CAST institutes, factories, and other enterprises are centered upon the 501st Design Department, which functions as CAST’s overall systems engineering organization.188 Established in 1975, the 502nd Research Institute (also known as Beijing Institute of Control Engineering) designs, researches, and develops satellite attitude and orbit control systems, including jet propulsion and various guidance, navigation, and control subsystems. The 508th Research Institute designs and develops EO and other satellite sensors. The principle assembly facility is the 529 Factory. Other institutes specialize in vacuum and cryogenic technologies, antenna systems, and modeling and simulation.189 A subsidiary in Shenzhen is expected to develop and produce a number of navigation satellites on behalf of the CASC Fifth Academy.190 The CASC Fifth Academy is the industrial lead systems integrator for major communications satellite programs. CAST has a number of international cooperation programs, including with entities from the Netherlands, Germany, and Pakistan, to name a few.191

The CASC Eighth Academy, also known as the Shanghai Academy of Space Technology (SAST), designs, develops, and manufactures satellites, along with specialized launch vehicles and other aerospace systems. SAST oversees a dedicated design department—the 509th Research Institute—that focuses on weather, SAR, and electronic reconnaissance satellites. Established in August 1961,
the CASC Eight Academy is the aerospace industry’s largest and most diverse business division. Employing around 16,800 people, the institution was in large part formed through the consolidation of several defense industry research institutes in the mid-1960s.

CASIC’s First Academy, also known as the Academy of Information Technology, has designed and fielded microsatellites. Working with the academic community, the CASIC First Academy is one of a number of entities within China focused on operationally responsive tactical microsatellites that ostensibly could be launched on solid-fueled launch vehicles. It also is engaged in R&D satellite applications and Beidou and GPS/inertial guidance units. Serving as a test bed for MEMS-based guidance and navigation systems, its most prominent products are the Hangtian-Tsinghua-1 (HT-1) 50-kg microsatellite that operates in SSO, and the 25-kg NS-1 microsatellite. One institute under the Academy of Information Technology specializes in space-based and missile-borne ECM research and development.192

Microsatellite Programs

In a crisis situation, China may have the option of augmenting existing space-based assets with microsatellites launched on solid-fueled launch vehicles. Weighing between 10 and 100 kg, past microsatellite programs appeared experimental in nature, but competency and experience could translate into a lower cost, operationally responsive space capability.193 Microsatellites also serve as experimental technology test beds for MEMS and formational flight as an integrated constellation that could offer greater survivability due to their numbers and potentially reduced radar cross section. While speculative, microsatellites may function in part as technology demonstrations for counterspace operations, including ASAT KKVs. A number of R&D organizations in China have entered the microsatellite field, including CAS, CASIC First Academy, CASC Fifth Academy, CASC Eighth Academy, Nanjing University of Aeronautics and Astronautics, Harbin Institute of Technology, and Tsinghua and Zhejiang Universities.194

Initial technology demonstration programs include the Tsinghua-1 satellite, an ostensibly privately funded program carried out in conjunction with the United Kingdom’s (UK) University of Surrey. Launched in June 2000, the Tsinghua-1 weighed 50 kg and conducted experiments on satellite-

192 Formed in 1978 in Nanjing, the 8511 Institute is the aerospace industry’s main electronic and infrared countermeasures entity. It manages an integrated test and manufacturing facility in Nanjing’s Jiangning Science Park.

193 For an overview of CASC microsatellite development, see China Space Network, [集团公司组织召开微小卫星关键技术研讨会], May 6, 2011.

borne navigation, multispectral remote sensing, and store and dump downlink communications. The program appears to have been jointly managed by Tsinghua University and the CASIC First Academy. A subsequent Tsinghua/CASIC microsatellite program was the Naxing-1, launched on April 18, 2004, as a piggyback to the Shiyan-1. Naxing served as a MEMS test bed for an onboard miniature inertial measurement unit and complementary metal-oxide-semiconductor digital imagery. Shiyan-1, developed by the Harbin Institute of Technology, was also launched on April 18, 2004, and followed by the Shiyan-3. Other organizations involved include CAST, CAS Changchun Institute of Opto-Electronics, and Xian Institute of Survey and Mapping.

Another microsatellite is Pxing-1, a state-funded completed program developed by Zhejiang University, which has been involved in defense-related basic research. The initial Pxing satellite was launched from Jiuquan in conjunction with the Yaogan-2 on May 25, 2007. Two additional Pxing microsatellites were launched as piggyback payloads on the Yaogan-11 in September 22, 2010, from Jiuquan. The satellite was intended to function as a test platform for digital imagery, data storage, and management; downlink communications; attitude control; MEMS inertial measurement unit; thermal control; and other missions.

Other programs include Banxing-1 (BX-1), a payload of less than 40 kg that deployed from the Shenzhou-7 orbital module in September 2008 to test data relay and other payloads associated with Shenzhou-8. The BX-1 satellite was designed and manufactured by CAS’s Satellite Engineering Center. Another system, the 88-kg Chuangxin-1 (CX-1) satellite, was a prototype LEO telecommunication satellite launched in October 2003. A second was launched in November.

196 For background on the CASIC role, see the CASIC Satellite Technology Ltd. official website [航天科工卫星技术有限公司] at http://www.casic-sat.com.cn/abouts.asp.
199 Zhejiang University has been actively involved in research associated with strike technology, including the 863-801 and 863-805 programs.
Yet another program was the Beijing-1, a miniature satellite designed and manufactured by Surrey Satellite Technology Ltd (SSTL) for the Disaster Monitoring Constellation of the International Charter on Space and Major Disasters. Beijing-1 was delivered into polar orbit on a Russian launch vehicle from Plesetsk in October 2005. SSTL concluded an agreement for three additional satellites with one-meter resolution to be launched in 2014. Now an Airbus subsidiary, SSTL oversees a space debris removal satellite system.

Counterspace RD&A

The CASIC First Academy (Academy of Aerospace Information Technology) is likely central to engineering R&D of space-based ECM systems. The First Academy’s R&D Center and 8511 Institute are responsible for space ECM, with the latter publishing a leading journal entitled Aerospace Electronic Warfare (航天电子对抗). China Electronics Technology Group Corporation (CETC) appears to be a prominent player in ground-based satellite ECM systems.

CASIC’s Second Academy is the principal enterprise responsible for kinetic kill counterspace systems and is China’s largest producer of air defense missile systems. Established in 1961, and with a growing emphasis on integrated air and space defense, the Second Academy consists of a design department, ten specialized research institutes, a simulation center, three factories, and nine commercial enterprises. The extent of the academy’s formal relationships with foreign enterprises remains unclear. With the PLAAF serving as a core customer, the Second Academy’s most prominent defense products include the Hongqi series of surface-to-air missile systems, including the missile, radar, and associated ground equipment. The Second Academy also likely designed the space intercept systems that were tested in January 2007 and January 2010. CASIC

conducted successful tests of a KKV in January 2007 and January 2010. In doing so, they demonstrated an ability to intercept polar orbiting satellites and rudimentary medium-range ballistic missiles during the mid-course of flight. Subsequent tests may have taken place in 2013, 2014, and 2018. At least one KKV funding source during the late 1990s and earlier this decade appears to be the 863-409 program (and possibly the 863-706 program). These technologies include active millimeter wave and possible passive imaging infrared terminal guidance and automated target recognition software. These technologies likely also have applications for increasingly accurate and lethal ballistic, hypersonic, and cruise missile systems.

SECTION FOUR
MILITARY-CIVIL FUSION POLICIES AND INTERNATIONAL COOPERATION

Under General Secretary of the CCP Xi Jinping, the advancement of China’s domestic civilian space program is a central theme woven throughout many key PRC policies since the 18th Party Congress in 2012. In particular, the PRC’s military-civil fusion (MCF; 军民融合) strategy seeks to more effectively and efficiently integrate the use of both civilian and military-industrial economic resources to benefit the PLA. MCF builds on the well-established principles of civil-military integration, which sought to combine the defense and civilian industrial bases to meet military and commercial demands.209

Military-Civil Fusion and the PRC’s Space Program
The PRC State Council’s 2017 Opinions on Promoting the Deep Development of Military-Civil Fusion in the National Defense Science and Technology Industry states a need to “accelerate the overall planning of space infrastructure according to the needs of the military and civilian sectors” as well as increase the number of MCF projects in the realms of launch vehicles, deep space exploration, nuclear-powered space equipment, remote sensing satellites, and others.210 The recent influx of PRC non-state-owned “commercial” launch vehicle and satellite companies into China’s domestic market since 2015 suggests the PRC is successfully advancing MCF efforts, blurring the lines between civilian and military entities and obfuscating the ultimate end users of acquired foreign technology and knowhow, which in turn presents export control challenges for the United States.

China’s civilian space program is stewarded by PRC government organs under MIIT, including SASTIND and the CNSA (国家航天局). Some SASTIND leadership concurrently serve in the CNSA (see Tables 1 and 2 below), demonstrating that space is a critical aspect of MCF; SASTIND plays a central role in MCF implementation.211 According to the PRC State Council, SASTIND is tasked with serving the needs of national defense, military forces, the national economy, and military-related organizations in the fields of nuclear weapons, aerospace, aviation, and others.212 The CNSA is the primary PRC government agency in charge of civil space management and

international space cooperation, according to its official website. Subordinate CNSA departments hold a range of responsibilities and specialties, including earth observation, remote sensing, space debris monitoring, satellite research, and space law.

Table 2: SASTIND Leadership

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang Kejian (张克俭)</td>
<td>Director</td>
</tr>
<tr>
<td>Zhang Jianhua (张建华)</td>
<td>Deputy Director</td>
</tr>
<tr>
<td>Wu Yanhua (吴艳华)</td>
<td>Deputy Director</td>
</tr>
<tr>
<td>Xu Zhanbin (徐占斌)</td>
<td>Deputy Director</td>
</tr>
<tr>
<td>Tian Yulong (田玉龙)</td>
<td>Deputy Director</td>
</tr>
</tbody>
</table>

Source: SASTIND official website.

Table 2: CNSA Leadership

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang Kejian (张克俭)</td>
<td>Director</td>
</tr>
<tr>
<td>Wu Yanhua (吴艳华)</td>
<td>Deputy Director</td>
</tr>
<tr>
<td>Li Guoping (李国平)</td>
<td>Secretary-General</td>
</tr>
</tbody>
</table>

Source: CNSA official website.

SASTIND and the CNSA often collaborate with PLA institutions to further MCF development in the aerospace field, as demonstrated by the June 2019 release of the Notice on Promoting the Orderly Development of Commercial Launch Vehicles by SASTIND and the CMC/EDD on CNSA’s official website. This document states that commercial rocket companies engaged in launch vehicle research and production must report to SASTIND and the EDD before launching any products.

In addition, to launch vehicles, the PRC is actively pushing for MCF development in other “emerging fields” (新兴领域) in the civilian space industry, according to reporting from the China Electronics and Information Industry Development Research Institute’s (中国电子信息产业发展研究院) CCID Think Tank (赛迪智库), which is under MIIT. For instance, the CCID’s

Prospects for the Development of China’s Military-Civil Fusion in 2019 (2019年中国军民融合发展形势展望) highlights progress on Beidou (北斗)—China’s indigenous GNSS—within the context of advancements in civilian space and launch activities. The CCID report stipulates that PRC breakthroughs in GNSS follow the mincanjun (民参军) model, a concept that refers to civilian participation in the defense industry.

China’s Beidou program is a key example of MCF at work, demonstrating not only the indistinctness between civilian and military/defense entities but also the significance of civilian contributions to military and defense assets. Beidou is a PLA-coordinated program, which is made evident in the numerous CASIC entities that play a role in its development, including CASIC’s First, Second, Third, and Tenth academies, all of which provide unique contributions to Beidou development. CASIC touts itself as “adhering to the road of military-civil fusion with Chinese characteristics” (“…中国航天科工坚持走中国特色的军民融合发展之路…”).

Although collaboration between CASIC/CASC and the United States in space are prohibited by U.S. export regulations, both PRC entities have collaborated on space topics with U.S. allies, including Japan and the EU. For instance, CALT organized the International Academy of Astronautics (IAA) Academy Day in Beijing in November 2018, which was attended by former European Space Agency (ESA) administrator Jean-Jacques Dordain and Japan IHI Aerospace

Corporation President Shigeki Kinai. Known PLA affiliates such as Northwestern Polytechnical University also attended the event.

In addition to more traditional defense enterprises, ostensibly civilian-owned entities such as Beijing Unistrong Science and Technology (北京合众思壮科技股份有限公司) claim to play a leading role in Beidou development. Representatives from Unistrong appear throughout various aspects of Beidou development. For instance, Unistrong Independent Director Zhang Yongsheng (张永生) previously served as the director of the Institute of Remote Sensing and Aerial Survey Engineering of the PLA Institute of Surveying and Mapping, and Unistrong seems to have led the development of the first Beidou Overseas Center in Tunisia, which opened in April 2018. This center, also referred to as the China-Arab Beidou/GNSS Center (中阿北斗/GNSS 中心), will bring together participants from Oman, Algeria, Nigeria, Kuwait, Sudan, Iraq, Tunisia, and others to partake in PRC-led training and R&D cooperation on global navigation satellite systems.

Established by the Politburo Standing Committee in 1992, the China Manned Space Engineering Program (CMSP; 中国载人航天工程) is tasked with implementing a “three-step development policy” (三步走) for human spaceflight. These steps include: (1) launching crewed spacecraft and improving experimental civilian space engineering, (2) making technological breakthroughs in extravehicular activities (EVA) and launching a space laboratory, and (3) building a space station. MCF is most evident in CMSP leadership, which contains both high-level military personnel as well as leaders from some of China’s top civilian S&T organizations. According to CMSP’s official website, the positions of chief commander and deputy chief commander are filled by CMC/EDD, MIIT, CAS, CETC, and CASC leadership. Notably, PLA personnel hold the top

two positions within CMSP (see Table 3), once again demonstrating the importance of the military in China’s space program.

Table 3: CMSP Leadership

<table>
<thead>
<tr>
<th>Name (Chinese)</th>
<th>Title</th>
<th>CMSP Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li Shangfu (李尚福)</td>
<td>Director, CMC EDD</td>
<td>Chief Commander</td>
</tr>
<tr>
<td>Qian Weiping (钱卫平)</td>
<td>Deputy Director, CMC EDD</td>
<td>Deputy Chief Commander</td>
</tr>
<tr>
<td>Zhang Kejian (张克俭)</td>
<td>SASTIND</td>
<td>Deputy Chief Commander</td>
</tr>
<tr>
<td>Shang Hong (尚宏)</td>
<td>Commander, PLASSF Space Systems Department</td>
<td>Deputy Chief Commander</td>
</tr>
<tr>
<td>Xiang Libin (相里斌)</td>
<td>Vice President, CAS</td>
<td>Deputy Chief Commander</td>
</tr>
<tr>
<td>Wu Yansheng (吴燕生)</td>
<td>Chairman, CASC</td>
<td>Deputy Chief Commander</td>
</tr>
<tr>
<td>Gao Hongwei (高红卫)</td>
<td>Chairman, CASIC</td>
<td>Deputy Chief Commander</td>
</tr>
<tr>
<td>Xiong Qunli (熊群力)</td>
<td>Chairman, CETC</td>
<td>Deputy Chief Commander</td>
</tr>
<tr>
<td>Zhou Jianping (周建平)</td>
<td>Chinese Academy of Engineering</td>
<td>Chief Designer</td>
</tr>
<tr>
<td>Chen Shanguang (陈善广)</td>
<td>International Academy of Astronautics</td>
<td>Deputy Chief Designer</td>
</tr>
<tr>
<td>Zhou Yanfei (周雁飞)</td>
<td>N/A</td>
<td>Deputy Chief Designer</td>
</tr>
</tbody>
</table>

Source: China Manned Space Program official website.235

MCF also dovetails with other PRC national-level policies such as Made in China 2025 (中国制造2025). This 2015 leading industrial policy aims to promote the development of key strategic emerging industries as China seeks to end its reliance on international technology and upgrade its own domestic industrial capability. Made in China 2025 lays out ten “key areas” (重点领域) for targeted rapid development—including aerospace equipment (航空航天装备)—which are reiterated in the 13th Five-Year Plan (2016–2020). The 13th Five-Year Plan highlights a need to develop next-generation and heavy-lift launch vehicles as well as new types of satellites and other space platforms and payloads.236

235 China Manned Space Program [中国载人航天工程], Program Introduction [工程简介].
Academia and Universities’ Role in Space-Related Basic Research and RD&A

China’s university system plays an important role in space-related R&D. State academic organizations such as the Chinese Academy of Sciences (CAS) house units dedicated to various aspects of civilian space research. CAS is different from other traditional universities in China, functioning more like a think tank and academic governing institution directly under the supervision of the State Council. CAS’s link to the State Council means it develops policies and recommendations around state priorities and communicates them to academic institutions.237

CAS institutes such as the National Space Science Center (NSSC; 国家空间科学中心) and the Technology and Engineering Center for Space Utilization (CSU; 空间应用工程与技术中心) lead the institution in space-related research and development. The NSSC claims to be the primary PRC institution responsible for planning and developing space research in the fields of space physics, satellites, remote sensing, engineering technology, deep space exploration, and others.238 It has also made significant contributions to several key aspects of China’s aerospace industry, including its applied satellite, human spaceflight, and lunar exploration programs.239 In 2011, CAS approved the Strategic Priority Program on Space Science, making the NSSC a CAS pilot project.240

Select Projects from the NSSC Strategic Priority Program

Hard X-Ray Modulation Telescope (HXMT): Proposed by CAS academician Li Tibei(李惕碚), HXMT allegedly has the ability to survey black holes and other high-energy objects in space,241 where traditional telescopes would be blind to brighter energy sources. The first HXMT, dubbed Insight, was launched into an orbit of 550km above earth in June 2017.242 Chinese media reports note that the telescope will allow scientists to study how to use pulsars for spacecraft navigation.243

Quantum Experiments at Space Scale (QUESS): QUESS aims to implement long-distance quantum communication networks based on high-speed quantum key
distribution between satellites and ground stations.244 Cited as a major breakthrough by CAS academician Pan Jianwei (潘建伟), QUESS is designed to establish “hack-proof” quantum communications by transmitting uncrackable keys from space to the ground.245 China is currently collaborating with Austria and other nations to establish the first-ever “global quantum communication network” by 2030.246 In February 2019, QUESS was awarded the Newcomb Cleveland Prize from the American Association for the Advancement of Science for “laying the groundwork for ultra-secure communication networks of the future.”247

The CSU also has played a major role in human spaceflight engineering R&D. The CSU conducts research on payloads, electronic information technology, electromagnetic technology, space manufacturing, deep space exploration, space software, space simulation technology, and other areas.248 It houses China’s Key Laboratory of Space Utilization (LSU; 太空应用重点实验室), a CAS-directed lab focused on finding new applications for advanced technologies in space, particularly in the field of human spaceflight engineering.249 Notably, the LSU has historically utilized plans and research from the National Aeronautics and Space Administration (NASA) and other international space programs as the basis for its research. For instance, in 2016 the LSU released a report titled NASA Technology Roadmap that analyzes potential development pathways over the next 20 years for key technologies such as remote sensing instruments and lasers, noting that this plan was adapted from the 2015 NASA Technology Roadmaps.250 In this instance, the LSU appears to only be copying NASA, as Individual Technology Roadmaps are publicly available; there were no observable cases of formal collaboration between NASA and the LSU. However, more broadly this signals that PRC entities are paying close attention to U.S. space goals and policies in an attempt to replicate them. The CSU also collaborates with other space R&D academic institutions. It directs joint laboratories with Beihang University as well as China’s

244 National Space Science Center, Chinese Academy of Sciences, “Strategic Priority Program on Space Science.” http://english.nssc.cas.cn/missions/FM/.
249 Key Laboratory of Space Utilization, Chinese Academy of Sciences [中国科学院太空应用重点实验室], “Laboratory Introduction” [实验室简介]. http://lsu.csu.cas.cn/sysgk/jj/.
National University of Defense Technology, the latter being the PLA’s military engineering university.\(^{251}\)

CAS units are actively participating in international cooperation initiatives with foreign universities and institutions. In 2009, the NSSC collaborated on a Sino-Russian Joint Mars Exploration Program known as Firefly No. 1（萤火一号）, the first Chinese vessel to conduct an interplanetary mission, according to the NSSC.\(^{252}\) CAS has also set up joint overseas laboratories like the CAS South America Center for Astronomy (CASSACA; 中国科学院南美天文研究中心), also referred to as the China-Chile Joint Center for Astronomy (CCJCA). According to the center’s overview in vernacular Chinese, CASSACA’s main purpose is to “meet the strategic needs of the internationalization of S&T innovation and promote the ‘going out’ of CAS.”\(^{253}\) Through CASSACA, CAS seeks to exploit South America’s astronomical observation resources and its strategic location to achieve breakthroughs in space research.\(^{254}\) The program is housed by the University of Chile\(^{255}\) in Santiago and has received support from both the PRC and Chilean governments through high-level visits.\(^{256}\)

In October 2017, CAS’s National Astronomical Observatory of China (NAOC; 中国科学院国家天文台) announced a strategic cooperation agreement with the California Institute of Technology at a ceremony that included nearly 50 scholars from NAOC, CalTech, Peking University, Tsinghua University, China’s University of Science and Technology, Nanjing University, and others.\(^{257}\) According to NOAC, the agreement renewed NAOC’s ability to use CalTech’s telescopes at the

\(^{252}\) National Space Science Center, Chinese Academy of Sciences, “Firefly One Mars Exploration Program” [萤火一号火星探测计划]. http://www.cssar.cas.cn/zdkyhd/yh1h/.

\(^{253}\) Chinese Academy of Sciences South America Center for Astronomy [中国科学院南美天文研究中心], “Center Introduction” [中心简介]. http://www.cassaca.org/zh\%e4\%b8\%ad\%e5\%bf\%83\%e7\%ae\%80\%e4\%bb\%8b/.

\(^{254}\) Chinese Academy of Sciences South America Center for Astronomy [中国科学院南美天文研究中心], “Center Introduction” [中心简介]. http://www.cassaca.org/zh\%e4\%b8\%ad\%e5\%bf\%83\%e7\%ae\%80\%e4\%bb\%8b/.

\(^{255}\) Chinese Academy of Sciences South America Center for Astronomy [中国科学院南美天文研究中心], “Center Introduction” [中心简介]. http://www.cassaca.org/zh\%e4\%b8\%ad\%e5\%bf\%83\%e7\%ae\%80\%e4\%bb\%8b/.

\(^{256}\) CASSACA, “Chinese Ambassador to Chile Xu Bu Unveiled the Office of CASSACA” [中国驻智利大使徐步为中智联合天文特峰天文项目办公室揭牌] August 14, 2018. http://www.cassaca.org/zh\%e6\%96\%b0\%e9\%97\%bb\%e7\%ae\%80\%e8\%a1\%a8\%2018\2008\%e4\%b8\%ad\%e5\%9b\%bd\%e9\%a9\%bb\%e6\%99\%ba\%e5\%88\%a9\%e5\%a4\%7\%e4\%bd\%bf\%e3\%be\%90\%e6\%ad\%a3\%e4\%b8\%ba\%e4\%48\%ad\%e6\%99\%ba\%e8\%1\%94\%e5\%90\%88\%e6\%96\%87\%e7\%b9\%b9\%e5\%b3\%b0\%e5\%a4\%9b\%e7\%9b\%ae\%e5\%a6\%9e/.

Palomar Observatory in San Diego.258 In addition, representatives from the institutions agreed at the ceremony to pursue academic exchange programs.259

Beyond CAS, PRC universities play a prominent role in China’s space-related R&D. Many, including Harbin Institute of Technology and Beihang University (北京航空航天大学), claim to conduct research in support of the PLA and the state. Harbin Institute of Technology’s School of Astronautics (哈尔滨工业大学航天学院) states on its official website that it established its first two aerospace majors in satellite engineering and aircraft engineering in 1990 with assistance from the Ministry of Space (now the China National Space Administration) and the China Academy of Space Technology, a subordinate CASC institution.260 Beijing University of Aeronautics and Astronautics (BUAA) portrays itself as the “leader and backbone” of China’s national defense and aerospace industry and also claims to have trained various PLA military leaders throughout its history.261

PRC universities conduct “party building work” (党建工作) in their various aerospace-oriented schools to ensure that research is conducted in accordance with Party guidelines. For instance, in October 2018 the Party Branch of the Spacecraft Technology Department at BUAA’s School of Astronautics held a meeting focused on “promoting the Party’s theoretical knowledge, propaganda, and practice in daily teaching and scientific research.”262

Space-oriented departments within universities also manage provincial, ministerial, and national-level R&D units. Northwestern Polytechnical University (NWPU; 西北工业大学) claims to oversee two national-level state key laboratories—the State Key Laboratory of Combustion, Thermal Structure and Internal Flow Fields (燃烧、热结构与内流场国家级重点实验室) and the State Key Laboratory of Aerospace Flight Dynamics Technology (陕西省微笑卫星工程实验室)—as well as provincial-level organs like the Shaanxi Provincial Microsatellite Engineering Laboratory. NWPU also appears to conduct space-related R&D for the PLA; NWPU’s School of

260 Harbin Institute of Technology School of Astronautics [哈尔滨工业大学航天学院], “College Introduction” [学院简介]. http://sa.hit.edu.cn/xygk/list.htm.

261 Beijing University of Aeronautics and Astronautics [北京航空航天大学], “Today’s Aerospace” [今日宇航].

Astronautics directs the Space Attack and Defense Technology Research Center (空间攻对抗技术研究中心).²⁶³

Cooperation with U.S. Institutions

PRC universities working on space issues also have numerous cooperation agreements, joint programs, and partnerships with foreign universities, organizations, and firms, including in the United States. These partnerships may be leveraged to transfer technology or important knowhow back to the PRC, providing insight into how Beijing circumvents U.S. exclusionary space policies like the Wolf Amendment, including by collaborating with firms that maintain close relationships with NASA. The Wolf Amendment states the following:

> None of the funds made available by this (House Appropriations) Act may be used for the National Aeronautics and Space Administration (NASA), the Office of Science and Technology (OSTP), or the National Space Council (NSC) to develop, design, plan, promulgate, implement, or execute a bilateral policy, program, order, or contract of any kind to participate, collaborate, or coordinate bilaterally in any way with China or any Chinese-owned company.²⁶⁴

The Wolf Amendment also prohibits the use of appropriations funding for hosting official Chinese visitors at NASA facilities. Limitations imposed by the Wolf Amendment do not apply to activities in which NASA, OSTP, or NSC have consulted with the U.S. Federal Bureau of Investigation (FBI) and ensured that the activities pose no risk of technology, data, or information transfer, and will not involve knowing interactions with officials “determined by the United States to have direct involvement with violations of human rights.”²⁶⁵

These collaborations and partnerships also allow PRC entities to gain access to and transfer key technology back to China, as well as broadcast PRC policies and standards to worldwide audiences. For example, the Institute of Remote Sensing and Geographic Information Systems (遥感与地理信息系统研究所) at Peking University’s School of Earth and Space Sciences (北京大学地球与空间科学学院) has international exchange and cooperation programs with the University of California, Santa Barbara; the University of Maryland; Columbia University; and Clark University; as well as other institutions in the UK and Canada.²⁶⁶ Nanjing University of Aeronautics and Astronautics (NUAA; 南京航空航天大学) also offers three joint degree programs in avionics,

²⁶³ Northwestern Polytechnical University School of Astronautics, “Research Institutions” [科研机构].

²⁶⁶ Peking University’s School of Earth and Space Sciences [北京大学地球与空间科学学院], “Institute of Remote Sensing and Geographic Information Systems” [遥感与地理信息系统研究所].
aviation manufacturing, and aeronautical engineering with City University of London (established in 2011), Australia’s Royal Melbourne Institute of Technology (established in 2012), and the UK’s Cranfield University (established in 2018).²⁶⁷

Additionally, all PRC universities almost certainly participate in MCF research and projects. For instance, in June 2017 the Sichuan Academy of Safety Science and Technology (SCASST; 四川省安全科学技术研究院) published an article stating that representatives from the Sichuan Provincial Defense S&T Industry Office, the CETC 29th Research Institute, CAS’ Institute of Remote Sensing and Digital Earth, and Peking University’s Institute of Remote Sensing and Geographic Information Systems visited SCASST to conduct a research exchange on the military-civil fusion safety supervision applications. According to the report, SCASST had previously “applied more than 4000 high-resolution satellite images of Sichuan Province, processed 2950 scenes of effective images, and obtained 850 high-resolution image fusion maps” used in several MCF arenas, including “non-coal mines, chemical parks, cultural relics protection, urban security, airports, and highways.”²⁶⁸ SCASST Party Secretary Shi Fuqiang also proposed that in the future, SCASST could apply its imagery technology to 3D laser scanning technology and ground observation technology to create “seamless coverage of multi-source data for risk warning.”²⁶⁹

Beijing Institute of Technology Partnership with George Washington University: Beijing Institute of Technology’s (BIT) Institute of International Law (北京理工大学国家法研究所) is actively working to shape research and promote PRC standards in international space law with George Washington University’s (GWU) Elliott School of International Affairs. The two organizations signed a cooperation agreement in September 2013,²⁷⁰ and GWU currently lists BIT’s Institute of Space Law as one of its “proud affiliates,” according to the university’s official website.²⁷¹

Through their cooperation agreement, the two universities conduct faculty exchanges and visits and host conferences and symposiums on international space policy and law. In June 2016, the two institutions held a symposium at the University of Vienna titled “Looking to the Future: Changing International Relations and Legal Issues Facing Space Activities.” According to BIT, a delegation from the PRC’s Ministry of Foreign Affairs (MOFA; 外交部) attended the symposium along with representatives from the UN Office for Outer Space Affairs. BIT Institute of Space Law Secretary-General Zhang Zhenjun gave a keynote speech titled “New Developments in Sino-U.S. Space Legal Relations.” Notably, GWU’s Space Policy Institute claims to be sponsored by a number of important U.S. defense contractors and federally funded R&D centers, including Aerojet Rocketdyne, Aerospace Corporation, Boeing, L3Harris Technologies, Lockheed Martin, Northrup Grumman, Raytheon, and others.

BIT Partnership with NanoRacks, Connection to Kuang Chi-Duke University Case: U.S.-based NanoRacks has previously collaborated with BIT to deploy PRC technology into space, despite its connections to the U.S. government and access to proprietary space-related information. NanoRacks is located in Houston near NASA’s Johnson Space Center. The company was founded in 2009 to provide commercial hardware and services for the International Space Station’s (ISS) U.S. National Laboratory as part of the Space Act Agreement with NASA. The company has since grown, having deployed over 700 payloads as of June 2018. In June 2017, NanoRacks announced it had launched and deployed the first-ever Chinese experiment to be brought aboard the ISS, despite regulations limiting Sino-U.S. collaboration in space. According to the official report from NanoRacks, the Chinese experiment came from BIT and was led by Deng Yulin, professor at Georgia Tech’s School of Chemical and Biomolecular Engineering. The company claims the project was launched only after approval from the U.S. government, and the BIT NanoLab will remain confined to the NanoRacks platform on the ISS to ensure it can “in no way interface with the ISS or NASA’s IT infrastructure and systems.”

NanoRacks has collaborated with additional Chinese entities on space-related R&D. In March 2018, the company announced a partnership with Shenzhen-based Kuang-Chi Science Limited (光

to cooperate on Kuang-Chi’s Traveler program—the PRC’s first near-space commercial platform. Kuang-Chi’s Traveler program is likely a dual-use effort in support of not only commercial but also PRC government and PLA priorities. In February 2015, Kuang-Chi entered into a strategic cooperation agreement with the Hunan Space Bureau (068 Base) and CASIC’s 7801 Research Institute to collaborate on aerostat R&D and production in near space. This collaboration, in conjunction with Kuang-Chi’s commercial “space tourism” platforms, may serve as a vehicle for collecting foreign technology and knowhow, as demonstrated by the company’s collaboration with NanoRacks. Specifically, the partnership will focus on the development of Traveler outside of China by leveraging Kuang-Chi’s near-space technology and NanoRacks’ expertise in in-space business development and customer marketing. In March 2018, Kuang-Chi president and cofounder Liu Ruopeng noted that the Traveler program is being developed to create a “space vehicle that can be used both for scientific research and [to] provide commercial travel to near space.”

Established in 2010, Kuang-Chi is regarded highly by the PRC government, as made evident by General Secretary Xi’s December 2012 visit to the company’s headquarters—his first official visit to a company as leader of China’s ruling party. Kuang-Chi is also involved in key PRC strategic initiatives thanks to its position as host and overseer of the State Key Laboratory of Metamaterial Electromagnetic Modulation Technology. The company notes on its website that “state key” denotes “funding or support by the Chinese government.”

Separate from its connection to NanoRacks, Kuang-Chi is yet another example of PRC transfer of critical technology and knowhow from the United States to China via PRC recruitment programs. Kuang-Chi was founded by five Chinese scientists who returned to China after receiving advanced degrees from elite institutions in the United States and Europe. The company’s origins trace back to a Duke University research lab focused on cutting-edge stealth applications of metamaterials. Liu Ruopeng, often referred to as “China’s Elon Musk” in PRC official media,

allegedly arranged meetings with Chinese officials associated with Plan 111—a key PRC talent recruitment program—as a means to transfer the lab’s critical technological research back to China.287

International Recruitment Programs

The Thousand Talents Program (千人计划) encourages Chinese citizens working in high-tech strategic sectors overseas to return to China and boost the country’s S&T innovation capabilities. It has implemented subprograms for both young and non-ethnic Chinese experts (see Figure 3 for an example of a recruited individual).288 The program is directed by several high-level PRC government and CCP Party organizations, including the PRC Ministry of Education (MOE), the CCP Central Organization Department, the Ministry of Science and Technology (MOST), the State-Owned Assets Supervision and Administration Commission (SASAC), MIIT, the United Front Work Department (UFWD), MOFA, the Ministry of Public Security (MPS), and others, according to the program’s official website.289 The website also states that Thousand Talents awardees receive special benefits, including the title of “National Distinguished Expert” and a guaranteed position at a university, R&D institute, or central state-owned enterprise.290 Awardees also receive a one-time monetary package of $140,000 (renminbi [RMB] 1 million) “from China’s central budget” as well as permanent residence status for them and their families, insurance, housing subsidies, guaranteed admission to schools for their children, job offers for spouses, and other perks.291 To qualify, individuals must meet the following criteria, according to declassified U.S. intelligence reporting:

- Expert or scholar with full professorship in a prestigious foreign university or research and development institute;

- Technical managerial professional in a senior position at an internationally known company or financial institution; or

- Entrepreneur holding intellectual property rights or key technologies and processes, as well as overseas experience.292

The 2006 Plan 111 aims to recruit foreign S&T experts and bring them to China to support the enhancement of China’s domestic innovation and S&T capabilities. The plan was jointly initiated by the MOE and the State Administration of Foreign Experts. In addition to acquiring overseas talent, Plan 111 also seeks to utilize overseas talent to build world-class universities and S&T disciplines within China’s domestic higher education. In line with this plan, the MOE selects domestic Chinese universities to participate based on achievements in specific disciplines; in 2018, MOE selected 62 universities to participate in Plan 111 (see Appendix for a detailed list).

China’s Hundred Talents Program (百人计划) is touted as China’s first overseas-oriented program for recruiting high-level S&T talent. This program appears to be a more specific precursor to the Thousand Talents Program in that it was exclusively designed for cultivating S&T talent for CAS and focuses on attracting younger individuals. Programs like China’s National High-Tech Research and Development Plan (国家高技术研究发展计划) (hereinafter referred to as Plan 863; 863项目) offer an institutionalized extrabudgetary source of funding for PLA strategic advanced technology initiatives.

http://tech.ifeng.com/a/20180808/45108928_0.shtml.

Table 4: Overview of Chinese Talent Recruitment Programs

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Date Enacted</th>
<th>Associated Party/Government Body</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 863 (863 计划)</td>
<td>1986</td>
<td>MOST</td>
<td>Provides funding to leverage talent within China’s domestic university/research system.</td>
</tr>
<tr>
<td>Hundred Talents Program (百人计划)</td>
<td>1994</td>
<td>CAS</td>
<td>Aimed at transferring to China U.S. technology embodied in foreign scientists/experts working in foreign universities and businesses.</td>
</tr>
<tr>
<td>Plan 111 (111 计划)</td>
<td>2006</td>
<td>MOE</td>
<td>Aimed at recruiting “foreign high-level talents and intelligence” from world-class universities to “serve China’s strategic needs.”</td>
</tr>
<tr>
<td>Thousand Talents Program (千人计划)</td>
<td>2008</td>
<td>MOE</td>
<td>Aimed at recruiting ethnic Chinese experts from foreign universities, research centers, and private companies to enhance China’s national capabilities in critical S&T fields.</td>
</tr>
</tbody>
</table>

Source: Various.298

PRC Non-State-Owned Space Business

Financing and Investment Vehicles

Beijing utilizes State-Industry Innovation Alliances (SIIAs; 产 业 创 新 联 盟) as financing and investment vehicles to support its domestic civilian space industry. SIIAs are smaller groups within target sectors that provide a platform for PRC government departments, domestic and international scientific research institutes, academia, Chinese defense industries, SOEs, and private enterprises to interface within China. They also help to facilitate overseas collaboration to promote the rapid development of targeted technological sectors and MCF applications, putting foreign companies at risk of sharing or having key knowhow taken that contributes to PRC strategic—including military—priorities.299

One such SIIA is the China Commercial Small Satellite Industry Innovation Alliance (中国商业小卫星产业创新联盟). This alliance is led by the Ministry of Commerce; Harbin Institute of Technology; several CASC entities, such as Beijing Institute of Space Science and Technology Information; China Space Sat Co.; Xi’an Institute of Space Radio Technology; and others. The alliance claims to have more than 100 members and prioritizes projects in “One Belt, One Road” (OBOR 一带一路) regions. According to official PRC media reporting, the alliance’s purpose is to unite domestic and foreign commercial aerospace research institutes as well as private companies and SOEs to “jointly promote the rapid development of China’s commercial aerospace and military-civil fusion applications.” It also aims to provide support and guidance for emerging players in China’s aerospace industry by encouraging private financing companies to invest in newer companies in the aerospace and satellite business. Notably, PLA official media states that the alliance will study and implement the policies, laws, and regulations of the CCP and the PRC government and guide its members—both domestic and foreign—to do so as well. Because the alliance is still fairly young—it was established in July 2018—only limited information about it is available.

Non-CASC/CASIC Launch Vehicle Companies

The following are examples of what the PRC touts as the leaders in its domestic “civilian” or “commercial” launch vehicle industry. Despite this claim, these three companies all have strong ties to the state and CCP. In addition, MIIT’s CCID Think Tank claims CASC is China’s sole supplier of launch vehicles, suggesting CASC is the primary—if not the exclusive—supplier of materials to PRC commercial launch companies.

Notably, relevant companies have completed launches at Jiuquan Satellite Launch Center, which is overseen by the PLA. Many of the PRC’s allegedly commercial launch vehicle companies operate out of the Beijing Economic Technological Development Zone (hereinafter referred to as E-Town, also called Yizhuang; 亦庄卡还区). Yizhuang is a high-level economic and technological development zone in the city that oversees six smaller parks, including the Military-Civil Fusion Industrial Park. The zone is owned and operated by the Beijing E-Town International Investment and Development Co. (北京亦庄国际投资发展有限公司), which is wholly owned by the State-Owned Assets Supervision Office of the Beijing Economic and Technological Development Zone (北京经济技术开发区国有资产监督管理办公室).

ExPace: PRC media portrays ExPace (航天科工火箭技术有限公司), also known as the CASIC Rocket Technology Company, as the country’s first commercial rocket launch company. The company is better known for its quick-reaction Kuai Zhou family of orbital launch vehicles. Its products include smaller solid- and liquid-fueled rocket stages as well as larger versions that were first introduced in March 2018. National People’s Congress Deputy and Director of CASIC’s Hubei Provincial Science and Technology Committee Hu Shengyun stated that the new Kuai Zhou series “is representative of China’s work to promote military-civil fusion and develop its commercial aerospace industry.” ExPace was jointly founded in February 2016 by CASIC and its subordinate, China Sanjiang Space Group. CASIC is the majority-controlling shareholder.
China Sanjiang Space Group (中国三江航天集团) is primarily engaged in solid-fueled ballistic missiles and stealth/counterstealth technology R&D, according to a U.S. think tank report.\(^\text{317}\)

One Space: Beijing One Space Technology Co. (hereinafter referred to as One Space; 零壹空间科技集团有限公司) was founded in 2015 by Beihang University alumnus Shu Chang (舒畅), who previously worked for Legend Holdings, the controlling shareholder of Lenovo Group.\(^\text{318}\) One Space’s business focuses mainly on three sectors: its M-series commercial launch vehicle, its X-series flight test platforms, and electrical and propellant products;\(^\text{319}\) however, its products include missile control and measurement control communications, uncrewed aerial vehicle integrated avionics, ground monitoring and control communications, and satellite and microsatellite measurement and control communications.\(^\text{320}\) It also aims to enter the commercial small and microsatellite business over the next few years. News outlets within China often tout One Space as China’s answer to SpaceX.\(^\text{321}\)

Despite its claims to be privately owned, One Space maintains strong connections to both the PRC government and the CCP. In June 2019, One Space established a Communist Party committee, according to official reporting on One Space’s website.\(^\text{322}\) In 2018, the company also received $46.3 million in Series B financing led by China International Capital Corporation (CICC) Jiatai Equity Fund, a CICC subsidiary whose majority shareholder is the Central Huijin Investment Co. (中央汇金投资有限责任公司),\(^\text{323}\) a wholly owned subsidiary of the State Council’s China Investment Corporation (中国投资有限责任公司).\(^\text{324}\)

LandSpace: LandSpace Technology Corporation (蓝箭航天空间科技股份有限公司), also referred to as Blue Arrow, was founded in 2015 by Tsinghua University MBA alumnus “Roger” Zhang Changwu (张昌武) and Wu Shufan, a former European Space Agency employee and

324 Qichacha [企查查], “Entry for Central Huijin Investment Co., Ltd.” [中央汇金投资有限责任公司]. https://www.qichacha.com/firm_210b64792e1e20d88b2cd21a65720e471.html.
“expert of the National Thousand Talents Program,” according to PRC official media.325 The company’s official website states that LandSpace is a “Chinese private aerospace enterprise engaged in the R&D and operation of launch vehicles”326 and is focused on the development of liquid-fuel rocket engines and low-cost commercial launch vehicles with “independent intellectual property rights.”327

Non-CASC/CASIC Satellite Companies

Chang Guang Satellite Technology Co: Chang Guang Satellite (CGSTL; 长光卫星技术有限公司), founded in December 2014, claims to be China’s first commercial remote sensing satellite company. Its satellites are being used to track foreign military assets; a May 2016 Sina report shows pictures of high-definition (HD) satellite imagery of the Philadelphia Naval Yard taken by Chang Guang’s Jilin 1A Satellite (吉林一号光学 A 星) in April of that year.328

CGSTL’s official website states in vernacular Chinese that its ownership comprises seven shareholding units and 32 people, including CAS’ Changchun Institute of Optics, Fine Mechanics, and Physics, in addition to Jilin provincial government small and medium enterprises;329 however, the company’s English-language site states that there are only five shareholding units.330 CGSTL asserts that the company’s main business scope comprises R&D and sales for satellite and UAV systems as well as their components, loading systems, monitoring and tracking systems, and other relevant services.331 The company’s official website also claims that the company maintains an internal CCP Party Committee in charge of “propagandizing and implementing the rules and resolutions of the CCP Central Committee” throughout the organization, according to the company’s official Party “Working Rules”.332 CGSTL’s Party Committee has also recently won honorary titles from the Changchun Municipal Government in April 2019 and 2017.333 CGSTL is most well-known for developing the Jilin series of remote sensing satellites.

326 LandSpace, “About Us.” \url{http://www.landspace.com/site/about}.

327 LandSpace, “About Us.” \url{http://www.landspace.com/site/about}.

329 For background on CAS’s Changchun Institute of Optics, Fine Mechanics, and Physics [中国科学院长春光学精密机械与物理研究所], see Chang Guang Satellite Technology Co., “Company Profile” [企业简介]. \url{http://charmingglobe.com/about_tw.aspx?id=9}.

Jilin No. 1 (吉林一号) was first launched in October 2015 from the Jiujian Satellite Launch Center.

CGSTL has worked closely with provincial and local governments on the Jilin project, and in 2018 jointly established the $70 million (RMB 500 million) “Jilin Aerospace Information Innovation Venture Capital Fund” (吉林省航天信息创新创业投资基金) with the Jilin provincial government and Changchun municipal government.334

A CGSTL media report states that in March 2019 the company provided disaster relief support as part of its China Group on Earth Observations (GEOSS) Disaster Data Response Mechanism, following the January 2019 dam collapse at the Corrego do Feijão iron mine. China GEOSS program coordinator Li Gouging claims that the system is “complementary to the International Charter Space and Major Disasters,” and that the system is able to “mobilize high-resolution satellite resources operated by both government institutes and commercial sectors for international emergency response and make the data openly available to the public afterwards.”335 CAS’ Institute of Remote Sensing and Digital Earth is also a contributor to this regional initiative.336

Beijing PieSat Information Technology Co: Beijing PieSat, founded in 2008, is a Chinese high-tech commercial firm that specializes in remote sensing and satellite technology.337 The company website states that PieSat independently developed its Pixel Information Expert (PIE) software that can be used for analyzing remote sensing imagery and data using advanced information extraction techniques and artificial intelligence.338 Its PIE-Map software provides map navigation and geographic information system (GIS) services for the government, army, enterprises, and other clients, according to PieSat’s official website.339 The company also claims that PIE-Map software is compatible with China’s Beidou satellite system.340

Most notably, PieSat’s website states that its “typical customers” (典型客户) include: the National Development and Reform Commission, the Ministry of State Security, the National Administration of State Secrets Protection (国家保密局), CASIC, CASC, the PLA General Staff Department, the PLA Logistics Department, the PLA Navy, the PLA Second Artillery Corps (now

the PLA Rocket Force), and others. The company’s initial public offering (IPO) report states that the company derived part of its income from PLA Unit 61741 in 2016, PLA Unit 61646 in 2017, PLA Unit 61683 in 2017, and the PLA’s Army Engineering University in 2018.

PieSat also maintains relationships with U.S. entities. For example, in October 2018 PieSat met with faculty from the University of Maryland’s (UMD) Department of Geological Sciences to discuss strengthening cooperation with Wuhan University—which the UMD press release claims receives a large donation from PieSat—as well as ways to strengthen UMD’s undergraduate study abroad program in China. In addition, in August 2017 a blog run by the Laboratory of Remote Sensing and Hydrometeorology at Florida Atlantic University (FAU) claimed that FAU Geomatics started a partnership with PieSat to develop applications based on the company’s PieSat 4.1 software package.

PRC Provision of Satellite Infrastructure, Launch Services Overseas

China has provided launch services to several countries over the past decade. These satellites are launched from either the Xichang Satellite Launch Center in Sichuan Province, the Jiuquan Satellite Launch Center, or the Taiyuan Satellite Launch Center in Shanxi Province, all three of which various PLA units operate and oversee. Satellites are launched using CASC First Academy Long March launch vehicles. In addition to launch services, China has also assisted some countries with their domestic satellite development and manufacturing. Key players in China’s aerospace industry—like CASC and its subordinate CGWIC—have contributed significantly to satellite programs in Venezuela, Sri Lanka, Pakistan, and elsewhere (see Table 5 for a more exhaustive list). In many cases, PRC entities appeared to have secured agreements giving them a key role in all phases of joint space programs, from design and financing to launch and subsequent operation of satellites and ground stations, so that they may use what they deem necessary to their own advantage.

Terms and conditions of contracts and agreements between China and other countries regarding ground stations and other space infrastructure appear to vastly benefit Chinese interests. For instance, the terms and conditions of the PRC’s agreement with Namibia to set up a telemetry, tracking, and command station for China’s Manned Space Program appear to benefit Beijing’s interests despite also allegedly being intended to help Namibia develop its own space program. As of 2019, it is unclear whether or not Namibia’s space program has benefited from its collaboration

with China. Between 2000 and 2012, the Namibian government claimed the station had participated in six space launches run by the China Manned Space Program. However, it was not until 2012 that the two sides signed an additional agreement to facilitate the employment of Namibian citizens at the Swakopmund station, suggesting that assisting Namibia likely was a secondary priority.345

For instance, in August 2019 Chinese taikonouts traveled to Namibia at the invitation of Namibian President Hage Geingob for a five-day visit. Although official PRC media reporting from the event mentions the delegation was expected to pay a courtesy call to President Geingob, meet “local middle school learners” at the space tracking, telemetry, and control station, and communicate with students at Namibia University of Science and Technology, it makes no mention of any concrete collaborations that would benefit the Namibian space program.346 The article also discusses President Geingob’s 2018 visit to the Beijing Aerospace Control Center, although it does not specify any details of his visit except his interaction with three unnamed taikonouts.347

Sri Lanka’s SupremeSat is owned in partnership with China Satellite Communications Co., a subsidiary of CASC, according to SupremeSat’s official website.348 This ownership structure strongly suggests the PRC maintains access to the satellite’s data and bandwidth. In addition, at the first signing ceremony for SupremeSat in 2013, China and Sri Lanka also signed a Memorandum of Understanding to cooperate on Beidou expansion in the Indian Ocean region.349 Specifically, SASTIND reporting claims Sri Lanka and China agreed to collaborate on improving Beidou’s commercial operations in the region, including applications in fisheries and transportation.350 The simultaneous signing of both the SupremeSat and Beidou agreements also suggests SupremeSat is meant to support Beidou’s expansion, and, therefore, that the PRC most likely has access to the satellite’s data at the very least.

Venezuela has collaborated with CGWIC since 2005. To date, the PRC has built and launched three satellites for Venezuela, with a fourth planned for 2022, according to an article by the China National Administration of GNSS and Applications (CNAGA; 中国卫星导航定位应用管理中

Venesat-1 was CGWIC’s first satellite in-orbit delivery contract signed with a Latin American customer, according to the company’s official website. Venezuela first signed a strategic cooperation agreement with CGWIC in November 2005 for Venezuela’s communication satellite, Venesat-1. The signing ceremony was attended by former Venezuelan President Hugo Chavez, as well as other high-level officials from CGWIC, the Venezuelan Ministry of Science and Technology, the CNSA, the Chinese Embassy in Venezuela, CASC First Academy, CLTC, and others.

According to the agreement, CGWIC would act as the general contractor for the project, which included undertaking the design, manufacturing, final assembly, testing, and launching tasks for the satellite with unnamed subcontractors. The contract also stipulated that China would deliver relevant ground monitoring and control facilities. Venezuela’s VRSS-2 satellite was designed by CASC’s China Academy of Space Technology, according to official PRC media reporting. PRC media also states that the project was launched in October 2014 after the Venezuelan government signed an agreement with CGWIC. General Secretary Xi and Venezuelan President Nicolas Maduro were both present at the signing ceremony for VRSS-2, according to official PRC reporting. The Venezuelan government claimed in official reporting that it signed an agreement with the CNSA to exchange data and applications. Mariano Imbert, director of the Bolivarian Agency for Space Activities (ABAE; Agencia Bolivariana para Actividades Espaciales) also stated that, as per the agreement, Venezuela will have access to information from the PRC’s GF1 and GF2 satellites, and China will have the ability to view Venezuelan satellite imagery from Chinese territory.

China has also established programs with countries like Brazil to collaborate on satellite development and provide launch services. The China-Brazil Earth Resources Program (CBERS) dates back to 1988, and in October 1999 launched the first CBERS satellite, which it claims is utilized for observing and monitoring the earth’s resources and environment. For CBERS-1 and CBERS-2, China and Brazil agreed to split the over $300 million development costs 70-30, respectively. This agreement was revised in 2002 to have each country cover 50 percent of the costs. In a presentation to the UN Office for Outer Space Affairs, Guo Jianning, director of the China Center for Resource Satellite Data and Application (CRESDA; 中国资源卫星应用中心) discussed his organization’s role in the CBERS program. CRESDA’s responsibilities include: CBERS application development strategy; design, construction, and operation of CBERS application system; application fields; technologies related to CBERS data; and international cooperation related to CBERS data and applications. In his presentation, Guo states that CRESDA is directed by the PRC’s National Development and Reform Commission; CASC; and the Commission of Science, Technology and Industry for National Defense, which later became SASTIND.

In 2010, Argentina’s Satellogic agreed to outsource its satellite launches to CGWIC, according to PRC official media. The company also received financial support in 2017 from Chinese internet giant Tencent, which led Satellogic’s Series B fundraising efforts. The company claims to have clients in both the government sector as well as in industries such as forestry, agriculture, energy, finance and insurance, cartography, and critical infrastructure management. Regarding government clients, in September 2019 Satellogic announced a partnership with PRC company ABDAS, headquartered in Henan Province. An official press release stated that the agreement will provide ABDAS with access to a fleet of multispectral imagery satellites.

Although little information exists about ABDAS, Satellogic CEO Emiliano Kargieman stated that “the commitment of Henan government to embrace innovations in space technology, aid development, and propel forward the competitiveness of its industry serves as a source of inspiration,” suggesting ABDAS is affiliated with the Henan government. The company’s products, which include affordable high-resolution satellites and microsatellites, have been

launched from the Jiuquan Satellite Launch Center. According to Satellogic’s website, the company has seven global offices, including one in Beijing.

In January 2019, the company signed an agreement with CGWIC to have it launch 90 satellites on its LM-6 carrier rocket, with the first 13 satellites reportedly being delivered in late 2019; it will be the first use case of an LM-6 rocket for an international customer. Satellogic’s founder and CEO noted that once in orbit, the 90 satellites would be able to capture a one-meter resolution image of the world every week. According to a 2019 U.S. Geological Survey report and a Satellogic presentation on the International Telecommunication Union’s (ITU) website, Satellogic’s Aleph-1 constellation consists of a total of eight multiresolution multispectral satellites that are all sun-synchronous. NuSat-1 to 5 satellites were launched between 2016 and early 2018. NuSat-6 to 8 were planned for 2018, but it is unclear whether these have already been launched.

In addition, CGWIC’s website claims it signed strategic cooperation agreements with the Nigerian government (2004 and 2009), the Pakistani government (2008), the Laotian government (2010), the Bolivian Space Agency (2010), the Belarusian government (2011), and the Algerian government (2013) to cooperate with these countries on satellite development. Official PRC reporting notes that China Development Bank provided a preferential commercial loan to the Bolivian Space Agency to fund their satellite project. CGWIC was chosen for the NigComSat program because Russian and Israeli companies failed to meet contract requirements and U.S. and European companies allegedly questioned the Nigerian government’s ability to execute the contract. In April 2019, China and Pakistan strengthened their cooperation in space, signing a cooperation agreement on crewed space missions between CNSA director Hao Chun and Pakistan

Space and Upper Atmosphere Research Commission (SUPARCO) chairman Amer Nadeem.⁴³⁸ CNSA and SUPARCO are expected to establish a China-Pakistan space committee chaired by top officials from both countries in order to address future collaborations and issues, according to PRC official media.⁴³¹

Table 5: List of Countries That Have Had Satellites Launched in China

<table>
<thead>
<tr>
<th>Country</th>
<th>Satellite Project Name</th>
<th>Launch Year</th>
<th>Launch Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venezuela</td>
<td>Venesat-1*</td>
<td>2008</td>
<td>Xichang</td>
<td>Plan to launch fourth satellite (Guaiacaipuro) in 2022.</td>
</tr>
<tr>
<td></td>
<td>Venezuelan Remote Sensing Satellite-1 (VRSS-1)*</td>
<td>2012</td>
<td>Jiuquan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nigcomsat-1R*</td>
<td>2011</td>
<td>Xichang</td>
<td></td>
</tr>
<tr>
<td>Bolivia</td>
<td>Tupac Katari (TKSat-1)*</td>
<td>2013</td>
<td>Xichang</td>
<td>Plan to launch second satellite in 2020–2021.</td>
</tr>
<tr>
<td>Ecuador</td>
<td>NEE-01 Pegaso</td>
<td>2013</td>
<td>Jiuquan</td>
<td>Last satellite launched by Russia in 2013.</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>SupremeSAT-1*</td>
<td>2012</td>
<td>Xichang</td>
<td>Second satellite (SupremeSAT-2) delayed but expected to be launched imminently.</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Badr-1</td>
<td>1990</td>
<td>Xichang</td>
<td>Last satellite launched in 2018.</td>
</tr>
<tr>
<td></td>
<td>PakSat-1R*</td>
<td>2011</td>
<td>Xichang</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pakistan Remote Sensing Satellite-1 (PRSS-1)</td>
<td>2018</td>
<td>Jiuquan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PakTES-1A</td>
<td>2018</td>
<td>Jiuquan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palapa-N1*</td>
<td>2017</td>
<td>Xichang</td>
<td></td>
</tr>
<tr>
<td>Laos</td>
<td>LaoSat-1*</td>
<td>2015</td>
<td>Xichang</td>
<td>Last satellite launched in 2015.</td>
</tr>
<tr>
<td>Brazil</td>
<td>CBERS-1*</td>
<td>1999</td>
<td>Taiyuan</td>
<td>Plan to launch CBER-4A during second half of 2019.</td>
</tr>
<tr>
<td></td>
<td>CBERS-2*</td>
<td>2003</td>
<td>Taiyuan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBERS-2B*</td>
<td>2007</td>
<td>Taiyuan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBERS-3*</td>
<td>2013</td>
<td>Taiyuan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBERS-4*</td>
<td>2014</td>
<td>Taiyuan</td>
<td></td>
</tr>
</tbody>
</table>

* Satellite was developed either partially or fully by PRC entities.

Source: Various.⁴³²

⁴³² China Science Communication [科普中国], China Association for Science and Technology [中国科协]“Successful Launch of the ‘Venesat No. 1’ Communication Satellite on October 30, 2008” [2008年10月30日成功发射‘Venesat No.1’通信卫星].
Beidou Achieving Global Reach

The PRC is actively pursuing the “going out” of its indigenous Beidou GNSS, which in December 2018 reached the initial stages of global coverage with the launch of Beidou 3. Based on official Beidou reporting, it appears Beidou will now provide “basic” global coverage, meaning the PRC is still in the process of launching additional satellites to support “full” global coverage by the end of 2020. Beidou “basic” global coverage is currently only available to participating OBOR nations, as the system is still under development. “Basic” coverage is likely being offered only to OBOR countries as part of the Digital Silk Road (DSR; 数字丝绸之路) initiative, which prioritizes satellites and specifically promotes Beidou. In offering Beidou to OBOR partners, the PRC is undoubtedly attempting to gain influence as a regional technological power. Beidou nevertheless is currently being offered free of cost, similar to GPS and other GNSS, so the PRC is likely not gaining as much economically from these deals. However, the PRC is hoping to deploy Beidou as an alternative to U.S. GPS, suggesting it may eventually try to get countries to choose its system over GPS. The Beidou system has a range of dual-use applications, including smart agriculture, land surveying and mapping, autonomous vehicles and drones, storage logistics, airport management, precision-guided munitions, and combat drones.

Beijing has cooperated with the United States, Russia, and the EU on GNSS technology and interoperability throughout Beidou’s development. In 2003, China began collaborating with the

EU to develop both Beidou and the EU’s Galileo Satellite System; in 2003, the two signed strategic cooperation agreements to share Beidou’s technology with European developers in exchange for access to Galileo technology as the system matured. The following year, the United States and EU resolved lengthy negotiations on satellite R&D and interoperability, although the United States had allegedly expressed reservations about the EU’s engagement policy toward the PRC and what it viewed as an inefficient export control system. Analysis by the EU’s Institute for Strategic Studies assesses that the U.S.’s move to subject satellite technology to International Traffic in Arms Regulations (ITAR) in the 1990s effectively blocked the Chinese market from Western launches and applicable technologies and pushed the PRC closer to the EU at a time when bilateral relationships between the two countries were already booming. Attempts by U.S. policymakers to hinder China from acquiring satellite technology from the West arguably failed, as demonstrated by the April 2005 launch of the APSTAR VI communications satellite aboard a Chinese Long March rocket from Thales Alenia Space (then referred to as Alcatel Alenia Space) in Cannes, France. Collaborations and sales of dual-use technology between PRC and EU entities during this period likely resulted in technology transfers that led to major advancements in the development of the Beidou system and the PRC’s ASAT weaponry.

The PRC and Russia have maintained a strong collaborative relationship on the mutual development of their respective GNSSs. First launched in 1982, Russia’s Global Navigation Satellite System (GLONASS) is currently one of four GNSS “core providers,” according to the UN’s International Committee on Global Navigation Satellite Systems (ICG). Over the past decade, China and Russia have entered into several cooperation initiatives aimed at improving interoperability of their two systems and finding new applications. Many of these initiatives have come out of the China-Russia Committee on Important Strategic Cooperation (中俄卫星导航重大战略合作项目委员会), including the Service Platform of Chinese-Russian Satellite Navigation Monitoring and Assessment, the Joint Demonstrations on Beidou and GLONASS-Based Cross-

392 Christopher J. Griffin and Joseph Lin, “China’s Space Ambitions,” Armed Forces Journal rehosted by the American Enterprise Institute, April 7, 2008. https://www.aei.org/articles/chinas-space-ambitions/.
393 Christopher J. Griffin and Joseph Lin, “China’s Space Ambitions,” Armed Forces Journal rehosted by the American Enterprise Institute, April 7, 2008. https://www.aei.org/articles/chinas-space-ambitions/.
Border Transporters, the Joint Design Center of Chinese-Russian Navigation Chips, and others.396

The China-Russia Committee on Important Strategic Cooperation held its fifth meeting in September 2018 and expects to continue collaborating throughout 2019, according to a China Navigation Satellite Committee presentation for the UN Office of Outer Space Affairs (UNOOSA).397

The PRC has repeatedly highlighted U.S.-China cooperation on bilateral frequency coordination agreements at almost every annual presentation to the ICG.398 In addition, in December 2017 the Office of Space and Advanced Technology at the U.S. Department of State, alongside the China Satellite Navigation Office, reportedly jointly established the U.S.-China Civil GNSS Cooperation Dialogue, aimed at promoting cooperation between the U.S. GPS and China’s Beidou.399 The two sides also signed the Joint Statement on Civil Signal Compatibility and Interoperability between the GPS and the Beidou Navigation Satellite System.400 This agreement likely came in response to incentives on the part of the UN to encourage compatibility and interoperability among global and regional GNSS through organizations such as UNOOSA and the ICG.401

As of 2019, Beidou has been deployed in Indonesia, Kuwait, Uganda, Myanmar, Maldives, Singapore, Laos, Cambodia, Thailand, Pakistan, and Russia, demonstrating China’s increased willingness to share access to its homegrown satellite system.402 In an interview with the South China Morning Post, a Beidou expert from Wuhan University who took part in the Beidou negotiations with Thailand stated that the Chinese government “is eager to show the Thais that

398 Reference to Sino-U.S. satellite cooperation can be seen as early as 2012. For example, see China Satellite Navigation Office, “Development of the Beidou Navigation Satellite System,” presentation for the Seventh Meeting of the International Committee on GNSS, November 5, 2012.

Beidou can do anything GPS does, and in some areas, it can do better.” The researcher is also quoted as having claimed that “if Thailand can embrace Beidou, other countries may follow and the Americans’ political, economic, and military power in the region will be reduced.” As part of the Beidou agreement with Thailand, Wuhan Optics Valley Beidou Holding Group established the first batch of three overseas Continuously Operating Reference Stations (CORS) in Thailand’s Chonburi Province in December 2013 to improve Beidou networking. Wuhan Optics Valley Beidou also plans to build a CORS overseas station in Sri Lanka, according to official PRC media reporting.

Pakistan was the first nation to deploy Beidou. As of 2018, the system was undergoing trial operations in Karachi. During a May 2014 visit to China, a representative from the Pakistan Space and Upper Atmosphere Research Commission stated that Beidou had successfully been applied to Pakistani urban management programs to assist with the urbanization process and allocation of resources. He also stated that Beidou had improved agricultural production efficiency and reduced waste. Beyond Pakistan, the China-Arab Beidou/GNSS Center was also inaugurated in Tunisia in April 2018. Beijing Unistrong promotes Beidou through training and R&D cooperation. Participating countries include Algeria, Iraq, Kuwait, Oman, Nigeria, and Sudan.

Role in Overseas Tracking Stations

The PRC is also expanding its space R&D capabilities globally through the establishment of foreign space tracking and downlink stations overseas. As of 2019, the PRC had established four of these stations in various strategic regions around the world, sometimes in collaboration with host nations, to improve its capacity. Notably, a number of these locations are being utilized by

entities with connections to the PLA; for example, the PLASSF’s China Satellite Launch and Tracking Control General manages the Patagonia Telemetry Tracking and Command Station located in Argentina’s Neuquén Province. The Patagonia Station—referred to as the CLTC Station, according to the Argentine government—was first announced in 2014 and construction was completed in 2017.

PRC media claims China’s tracking station in Kiruna, Sweden, is the PRC’s first wholly owned overseas satellite ground station, whereas other ground stations are the products of joint ventures. The ground station equipment in Kiruna was built and delivered in December 2016 by Space Star Technology Co., Ltd., (航天恒星科技有限公司) otherwise known as the CASC Fifth Academy (CAST) 503 Institute. Official PRC reporting states that the station’s location in Kiruna is ideal for remote sensing satellite data reception and will allow the PRC to acquire global data and respond to user application requirements more efficiently. Hong Kong media claim that no official representatives from the Swedish government attended the Kiruna station’s opening ceremony; however, Leif Osterbo, president of the Swedish Space Corporation’s (SSC) Satellite Management Services Division, was in attendance. Notably, SSC co-owns Australia’s Dongara satellite ground station with a U.S. subsidiary that assists the U.S. military, and this station was leased to CLTC in 2011.

The PRC also previously owned a space tracking station on Kiribati’s South Tarawa Island. Anecdotal reporting claims that the station, managed by CLTC, was used to monitor U.S. missile testing in the Marshall Islands; however, the station closed in 2003 following Kiribati’s decision to sever ties with Beijing and recognize Taiwan. \(^{418}\) After 16 years, Kiribati announced in September 2019 that it was switching its diplomatic recognition back to the PRC over Taiwan. International media reports have speculated that the station will be reopened, but no official statement has been made by Beijing or the government of Kiribati to that effect.\(^{419}\)

Figure 5: Chinese Space Tracking Station in Kiribati

Source: Liu Zhen, “Could Ties with Kiribati Be a Boost to China’s Space Ambitions?” South China Morning Post, September 21, 2019.

It is likely that the data collected at Chinese overseas ground stations is subject to the PRC’s National Cybersecurity Law. The law stipulates that “critical information infrastructure operators that gather or produce personal information or important data during operations” outside of mainland China may be required to store that information within China where the PRC deems it “truly necessary for business requirements.”\(^{420}\)

Table 6: Chinese Overseas Tracking/Ground Stations

<table>
<thead>
<tr>
<th>Location</th>
<th>Date Established</th>
<th>Chinese Operator</th>
<th>Local Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dongara, Australia</td>
<td>2011</td>
<td>China Satellite Launch and Tracking Control General</td>
<td>Swedish Space Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CLTC)</td>
<td></td>
</tr>
<tr>
<td>Swakopmund, Namibia</td>
<td>2000</td>
<td>China Manned Space Engineering Office (overseen by CMSP)</td>
<td>Ministry of Education of Namibia</td>
</tr>
<tr>
<td>Neuquén, Argentina</td>
<td>2014</td>
<td>China Satellite Launch and Tracking Control General</td>
<td>Comisión Nacional de Actividades Espaciales (CONAE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CLTC)</td>
<td></td>
</tr>
<tr>
<td>Kiruna, Sweden</td>
<td>2016</td>
<td>CAS</td>
<td>Swedish Space Corporation</td>
</tr>
</tbody>
</table>

Source: Various.421

Leveraging Foreign Technology and Knowhow

Examples of potential U.S. export control violations are hard to identify with certainty. However, within the space field, the PRC appears to have found ways around export limitations such as the Wolf Amendment, including through academic and international collaborations and partnerships (as covered previously in this section) as well as acquisitions and Hong Kong-domiciled companies covered below. These efforts almost certainly have allowed the PRC to secure knowhow and technology critical to the PRC’s space program development, including Beidou.

Large PRC SOEs are working to incorporate foreign knowhow and technology via strategic mergers and acquisitions and strategic cooperation agreements. Through these ventures, PRC companies gain necessary technologies and knowhow by transferring this information back to China to benefit Beijing’s domestic R&D efforts in strategic S&T fields. The Aviation Industry Corporation of China (AVIC), a key state-owned aerospace company, provides a useful case study. Additionally, cases involving AVIC are applicable to space due to the PRC’s history of targeting seemingly unrelated or innocuous aspects of various high-tech supply chains in order to gain access to key technology that may be applied in other instances.

In September 2010, AVIC entered into a strategic cooperation agreement with U.S. Aerospace Inc., a leading U.S. defense contractor. According to the official press release, under the agreement U.S.

Aerospace will provide AVIC with potential projects on which the parties can jointly bid, or specifications for aircraft components to be manufactured by AVIC. The agreement also stipulates that AVIC will supply all personnel, materials, facilities, and other resources necessary. U.S. court documents state that U.S. Aerospace filed for bankruptcy in August 2017 after failing to secure contracts, including one joint bid to work with AVIC on VXX, the new Marine One helicopter program. The company also cited issues related to disputes with lenders, an inability to close acquisitions and obtain significant financing, limited liquidity and capital resources, and an anticipated company reorganization.

In March 2015, AVIC also acquired Align Aerospace, a California-based company that provides supply chain services for the aerospace industries in North America, Europe, and Asia, after receiving approval from the Committee on Foreign Investment in the United States (CFIUS). Since being acquired by AVIC, Align has formed partnerships with other firms operating in the defense technology sector in the United States. For instance, in 2015 Align announced a long-term agreement with Pennsylvania-based Triumph Group Inc. (TGI) to support TGI’s global efforts. TGI has collaborated with leading U.S. defense contractors on platforms such as Lockheed Martin’s F-35 and F-16, as well as Northrop Grumman’s MQ-4C and RQ-4 remotely piloted vehicles, which are used by the U.S. Navy and U.S. Air Force, respectively.

Similarly, in May 2016 AVIC acquired AIM Altitude, a UK-based engineering, design, and manufacturing firm focused on cabin interiors. In addition to providing services to commercial airlines like Boeing and Airbus, the AIM Altitude website claims it is a leading supplier of cabin interiors for the UK Ministry of Defense.\(^{431}\) Three AVIC officials assumed leadership of AIM Altitude’s Board of Directors following the acquisition: Xu Tongyu, president of AVIC International; Liu Zhonghua, CFO of AVIC International; and Huang Jun, AVIC International’s director of Supply Chain Management and Procurement.\(^{432}\)

In addition to AVIC, PRC development of its indigenous atomic clock provides insight into the PRC’s significant reliance on foreign knowhow and technology for its domestic space program, as evidence suggests China would not have succeeded in developing indigenous atomic clocks without purchasing necessary technology from overseas. Beijing has long viewed the development of atomic clocks as a key challenge to advancing its Beidou system and has pushed to achieve this goal since the December 2018 launch of Beidou 3. Authoritative PRC S&T sources have often referred to atomic clocks as the “heart” of navigation satellites and also a key stumbling block to Beidou’s development. \(^{433}\) Beidou chief designer Yang Changfeng claimed in 2017 that the addition of atomic clocks would play a vital role in improving the system’s positioning accuracy.\(^{434}\)

In line with this goal, the PRC appears to have purchased atomic clocks from Swiss-based Orolia Group subsidiary, Spectratime, and used these to develop its own domestic version. Orolia Group’s 2010 IPO announcement states that the company entered into export contracts with China as recently as 2008—contracts that Orolia Group claims required a political risk guarantee from Swiss insurance firm Coface.\(^{435}\) A 2017 promotional article for CASIC’s 203 Institute boasts of its ultimate success following “14 years of struggle on the atomic clock battle front.”\(^{436}\) In August 2019, CASIC 203 Institute announced it had started mass producing super-thin rubidium atomic clocks.\(^{437}\)

that has developed this technology, further suggesting the PRC was reliant on the original purchase from Spectratime to get this crucial technology.

Role of Hong Kong-Domiciled Companies

Beijing also allows PRC companies to register subsidiaries and other ventures under Hong Kong domicile to take advantage of laxer market and trade regulations there while remaining under Beijing’s legal and political control. Furthermore, U.S. export controls consider the semiautonomous Hong Kong as separate from mainland China, allowing the PRC to use the island to skirt export control regulations. This provides PRC companies and their foreign business collaborators with a nominal veil over country-of-control, which—particularly in the case of strategic and dual-use S&T industries like aerospace—is frequently exploited to bolster representations made to foreign governments or businesses that these ventures have little to no connection to the PRC government. This, in turn, facilitates access to and acquisition of related knowhow and technologies that may otherwise be subject to U.S. export control regulations.

For instance, CASC’s wholly owned Hong Kong subsidiary China Aerospace International Holdings Limited (CASIL; 中国航天国际控股有限公司) claimed in its 2018 annual report that as the only overseas listed company directly held by CASC, CASIL “will bring its unique advantages into play in the development of CASC and serve the internationalization strategy of CASC.” The annual report also stated that CASIL “will be able to contribute to the establishment of the international business flagship of CASC,” suggesting its primary role as an intermediary between CASC and foreign entities.

In November 2018, CASIL subsidiary CASC Import & Export Co., Ltd. (航天科技进出口有限责任公司) held a “centralized procurement ceremony” (集中采购签约仪式) at the China International Import Expo in Shanghai with participants from the United States, Russia, France, Italy, South Korea, United Arab Emirates, Japan, Germany, Switzerland, and the Czech Republic, according to official reporting from SASAC. CNSA also claims the company established new business partnerships with airlines in the United States and Russia, including San Francisco-based SKY Leasing, during the November 2018 event. CNSA asserts that CASC Import & Export Co.

442 China National Space Administration, *CASC Group Held a Centralized Procurement Signing Ceremony during the Import Expo* [航天科技集团在进口博览会期间举行集中采购签约仪式], November 8, 2018. http://www.cnsa.gov.cn/n6758823/n6758838/c6803795/content.html.
had cooperated with Shanghai Bestar International Freight from July 2017 to July 2018 to rent a Boeing 747-400BCF freighter from the United States.\footnote{China National Space Administration, \textit{CASC Group Held a Centralized Procurement Signing Ceremony during the Import Expo} [航天科技集团在进口博览会期间举行集中采购签约仪式], November 8, 2018. \url{http://www.cnsa.gov.cn/n6758823/n6758838/c6803795/content.html}.}

California-based Loral Space and Communications has collaborated with both APT Satellite Company Limited (hereinafter referred to as APStar; \textit{亚太通信卫星有限公司}) and Asia Satellite Telecommunications Limited (hereinafter referred to as AsiaSat; \textit{亚洲卫星有限公司}) despite its previous controversial dealings with China’s space program. In May 2009, Loral subsidiary Space Systems/Loral (SS/L) was selected to provide a new communications satellite, named AsiaSat 5C, for AsiaSat.\footnote{Loral Space and Communications, “AsiaSat Selects Space Systems/Loral for AsiaSat 5C,” May 5, 2009. \url{http://s21.q4cdn.com/335413995/files/doc_news/archive/LORL_News_2009_5_5_General_Releases.pdf}.} The same subsidiary was also selected two years later to construct AsiaSat 6 and AsiaSat 8.\footnote{Loral Space and Communications, “AsiaSat Selects Space Systems/Loral to Provide Two Communications Satellites,” November 11, 2011. \url{http://s21.q4cdn.com/335413995/files/doc_news/archive/LORL_News_2011_11_11_General_Releases.pdf}.} In addition to its connections with AsiaSat, Loral has been involved in APStar’s satellite development. APStar 5C, also referred to as TeleSat 18V, was a 2018 joint project by APStar and Canada-based Telesat—which is 62.7 percent owned by Loral Space and Communications\footnote{Loral Space and Communications, “Company Profile.” \url{http://www.loral.com/Company/Company-Profile/default.aspx}.}—and was built by Space Systems/Loral.\footnote{Telesat, “Telesat Orders New Telstar 18 VANTAGE High Throughput Satellite and Launch Services,” December 23, 2015. \url{https://www.telesat.com/news-events/telesat-orders-new-telstar-18-vantage-high-throughput-satellite-and-launch-services}.}

In 2002, Loral Space and Communications Corporation agreed to pay a $20 million fine after it was found by the U.S. Department of Justice (DOJ) to have passed sensitive materials to China following a 1996 Loral satellite launch failure in China. Following the incident, China created an Independent Review Committee that included both Loral and U.S.-based Hughes Space and Communications to investigate the failure and report their findings to CGWIC, albeit without consent from the U.S. government. DOD concluded that both Loral and Hughes had committed a serious export violation “by virtue of having performed a defense service without a license”; DOD then recommended referral of the matter to DOJ for possible criminal prosecution, according to a report from the former Select Committee on U.S. National Security and Military/Commercial Concerns with the People’s Republic of China, otherwise known as the Cox Report.\footnote{Report of the Select Committee on U.S. National Security and Military/Commercial Concerns with the People’s Republic of China, \textit{Satellite Launches in the PRC: Loral}, January 2, 1999. \url{https://www.govinfo.gov/content/pkg/GPO-CRPT-105hrpt851/html/ch6bod.html#anchor1645545}.}

APStar was founded in 1992 and touts itself as a leading commercial satellite operator in the Asia-Pacific region, with six in-orbit satellites covering approximately 75 percent of the world’s population, according to the company’s official website.\footnote{APStar by APT Satellite, “Company Profile.” \url{https://www.apstar.com/en/about-apstar/}.} However, the company’s 2018 annual

Similarly, AsiaSat, founded in 1988, is advertised as a Hong Kong-based commercial satellite firm currently operating seven satellites and offering services in the Asia-Pacific region. However, the company’s website claims its two major shareholders are Carlyle Asia Fund IV and CITIC Group.\footnote{APStar by APT Satellite, “Company Profile,” https://www.apstar.com/en/about-apstar/.} CITIC Group is a wholly-owned PRC SOE managed by the PRC State Council;\footnote{AsiaSat Limited [亚洲卫星有限公司], “About Us” [关于我们]. https://www.asiasat.com/zh-hant/aboutus.} its predecessor, the China International Trust and Investment Corporation (中国国际信托投资公司), was founded in 1979 with support from Deng Xiaoping, according to CITIC’s official website.\footnote{Qichacha [企查查], “Entry for CITIC Group” [中国中信集团有限公司]. https://www.qichacha.com/firm_227f47c376342d8a0be61df2f5d5e94.html.} In addition to its ownership, various aspects of AsiaSat’s historical business ventures are also indicative of its connections to the PRC government. For example, an April 2019 investigation by the \textit{Wall Street Journal} claims that since AsiaSat launched its first satellite around 30 years ago, the PRC government has used the company to link state-run broadcasters to the provinces.\footnote{CITIC Group [中信集团], “Group Introduction” [集团简介]. https://www.group.citic/html/About_CITIC/Brief_Introduction/.}

Furthermore, the \textit{Wall Street Journal} notes that the Ministry of Public Security allegedly relied on both the AsiaSat 4 and AsiaSat 5 satellites to build rapid-response forces “capable of providing real-time audio and video from the field.”\footnote{Brian Spegele and Kate O’Keefe, “China Exploits Fleet of U.S. Satellites to Strengthen Police and Military Power,” \textit{Wall Street Journal}, April 23, 2019. https://www.wsj.com/articles/china-exploits-fleet-of-u-s-satellites-to-strengthen-police-and-military-power-11556031771.} As\textit{iaSat has consistently denied its connections to both the PLA and the PRC government; AsiaSat allegedly states that “China’s
military wasn’t a direct customer but used capacity that was first procured by telecommunications operators for disaster relief,” according to the WSJ investigation, and that the company “didn’t know how the authorities used its bandwidth in response to uprisings in Xinjiang and Tibet.” Although AsiaSat’s first few satellites (AsiaSat 1 and AsiaSat 2) were launched from China’s Xichang Satellite Launch Center, more recent models—including AsiaSat 4, AsiaSat 6, and AsiaSat 8—were launched at Cape Canaveral, and both 6 and 8 were launched by SpaceX with support from the U.S. Air Force Space Command’s 45th Space Wing.

CONCLUSIONS/RECOMMENDATIONS

The PRC is a global space power. Its modernization is creating growing uncertainties, intentions, and implications. Significant investments into space systems have the potential to deny the United States and its allies access to similar systems. China can achieve disruptive breakthroughs in space technology, including space launch, satellites, and counterspace capabilities.

Chinese political authorities view space power—a domain managed by a diverse set of military and civilian organizations—as one element of a broader international S&T competition. With preservation of the CCP’s monopoly on power as an overriding goal, a growing space presence consolidates the Party’s domestic and international legitimacy. Fusing civilian and military resources and administration, Chinese investment into space technology supports economic development and advances national defense modernization.

China’s ambitions in space are inherently dual-use in nature. Space technology increases the capacity of the PLA to project military power vertically into space and horizontally beyond its immediate periphery. Freedom of action in space offers the PLA potential military advantages on land, at sea, and in the air. The establishment of the PLA Strategic Support Force appears to have integrated organizational interests, operational planning, and acquisition. The PLASSF likely is integral to national- and theater-level command and control.

The PRC’s advances in space are significant. In addition to supplying low-cost commercial launch services to international customers, the PRC’s space program supports economic development through subsidized modernization of China’s high-technology industries. International cooperation offers China opportunities to accelerate its space technology.

China’s space program has matured rapidly. Looking out to 2030, the PLA and defense industry can be expected to expand its spacelift capacity and presence in space. An operational counterspace capability has significant implications for U.S. interests, including how these could be employed to target U.S. space assets or those of U.S. allies and partners. Space assets enable extended-range precision strike operations intended to deny U.S. access to or ability to operate within a contentious area in the Indo-Pacific region.

Greater vigilance over U.S technology is needed. The PRC routinely uses Hong Kong-domiciled companies to circumvent export controls, particularly in cases pertaining to advanced technologies with dual uses in defense, as made evident in the AsiaSat and APStar examples. Therefore, the U.S. government should work to reassess export control waivers for Hong Kong to ensure the protection of critical U.S. technology.
The CCP is executing a long-term strategy to exploit U.S. technology, talent, and capital to build up its military space and counterspace programs and advance its strategic interests. China’s pursuit of space superiority harms U.S. economic competitiveness, weakens U.S. military advantages, and undermines strategic stability. In short, it represents a threat to U.S. national security. Barring significant action to counter CCP space-related programs and activities of concern, it is likely these efforts will continue to harm U.S. interests.

Given the findings of this report, seven important considerations for Congress stand out:

- The current laws to protect U.S. technology and prevent U.S. capital from funding China’s military space programs and activities appear to be inadequate. Congress should consider passing new laws or enhancing existing laws in order to make it illegal for U.S. government departments and agencies, national labs, universities, companies, fund managers, and individual investors to support China’s space program and activities, which are inherently military (not civil) in nature.

- To support U.S. government efforts to safeguard U.S. national interests, Congress should consider mandating and funding the production of a routinely updated, publicly available list of entities formally engaged with the PRC’s space-related ecosystem. Such a list would serve to identify organizations and individuals that merit the imposition of U.S. government licensing requirements or sanctions, while providing the public with a resource to inform their decisions.

- The CCP’s predatory space-related behavior thrives in permissive environments that allow for the exploitation of uninformed U.S. decision makers at all levels. Congress should consider mandating and funding a public education campaign directed at enhancing general knowledge of China’s space programs and activities. Such a campaign might include more targeted congressional hearings and the allocation of grants for think tank and university research programs, public conferences, public-private consultative talks, and media outreach.

- Given the expansive nature of the threat, enhanced U.S. space competitiveness may require a departure from status quo spending habits. Congress should consider reviewing the budgets of NASA and the United States’ leading aerospace university programs to ensure they have the education funding necessary to support young and emerging scientists and technology innovators.

- The creation of a newly empowered U.S. Space Command could significantly strengthen the U.S. pool of national security space experts. In DOD, powerful bureaucratic forces have long existed that militate against the development of a world-class space warfighting capability. Congress should consider how funding the establishment of a potential new U.S. Space Force may better enable the military to organize, train, and equip future leaders.
needed to keep our nation competitive with China’s rapidly growing military space enterprise.

- Like-minded allies and partners play an important role in giving the United States a strategic edge in the space domain. Congress should consider how to offer greater incentives to the executive branch to deepen and broaden international space cooperation favoring U.S. interests, while at the same time mitigating the expansion of global CCP influence in space science and technology.

- The space competition between the United States and PRC will be waged on a number of fronts, one of which is informational. CCP-controlled entities and front organizations have prioritized the insertion of Beijing’s space-related propaganda themes into Hollywood blockbusters. Congress should consider imposing regulations on the U.S. entertainment industry to forestall the continued infiltration of authoritarian propaganda and censorship in Hollywood. At a minimum, movies should have warning labels informing viewers if their content has been coproduced, funded, altered, or otherwise approved by CCP-affiliated entities and China’s state censors.
APPENDIX

List of Newly Established Higher Education Discipline Innovation and Enlightenment Bases (Plan 111) in 2018

(2018 年度新建高等学校创新引智基地 (111 计划) 名单)

<table>
<thead>
<tr>
<th>Number (序号)</th>
<th>Base ID Number (编号)</th>
<th>Base Name (基地名称)</th>
<th>Support Unit (依托单位)</th>
<th>Person in Charge (负责人)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B18001</td>
<td>Post-Moore Era Micro-Nano Electronic Discipline Innovation and Enlightenment Base (后摩尔时代微纳电子学学科创新引智基地)</td>
<td>Peking University (北京大学)</td>
<td>Huang Ru (黄如)</td>
</tr>
<tr>
<td>2</td>
<td>B18002</td>
<td>Aerospace Multi-Scale Mechanics and Thermodynamics Innovation and Enlightenment Base (空天多尺度力学与热力学学科创新引智基地)</td>
<td>Beijing Aeronautical University (Beihang University)</td>
<td>Wen Dongsheng (文东升)</td>
</tr>
<tr>
<td>3</td>
<td>B18003</td>
<td>Advanced Manufacturing Disciplines for High-End Equipment and Medical Devices Innovation and Enlightenment Base (面向高端装备及医学器的先进制造学科创新引智基地)</td>
<td>Beijing University of Chemical Technology (北京化工大学)</td>
<td>Yang Weimin (杨卫民)</td>
</tr>
<tr>
<td>4</td>
<td>B18004</td>
<td>High-Speed Rail Efficient Operation and Safety Assurance Discipline Innovation and Enlightenment Base (高速铁路高效运营与安全保障学科创新引智基地)</td>
<td>Beijing Jiaotong University (北京交通大学)</td>
<td>Nie Lei (聂磊)</td>
</tr>
<tr>
<td>5</td>
<td>B18005</td>
<td>Medical Optical and Medical Imaging Disciplines Innovation and Enlightenment Base (医用光学与医疗成像学科创新引智基地)</td>
<td>Beijing Institute of Technology (北京理工大学)</td>
<td>Hao Qun (郝群)</td>
</tr>
<tr>
<td>6</td>
<td>B18006</td>
<td>Basin Water Safety and Comprehensive Management Discipline Innovation and Enlightenment Base (流域水安全与综合管理学科创新引智基地)</td>
<td>Northeast Normal University (东北师范大学)</td>
<td>Zhu Chen (朱晨)</td>
</tr>
<tr>
<td>7</td>
<td>B18007</td>
<td>Stem Cell Storage Technology R&D and Industry Health Intervention Research Discipline Innovation and Enlightenment Base</td>
<td>Peking Union Medical College (北京协和医学院)</td>
<td>Zhao Chunhua (赵春华)</td>
</tr>
<tr>
<td>序号</td>
<td>项目编号</td>
<td>项目名称</td>
<td>承担单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>1</td>
<td>B18001</td>
<td>(干细胞储存库工艺技术研发及业健康干预研究学科创新引智基地)</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>2</td>
<td>B18002</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>3</td>
<td>B18003</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>4</td>
<td>B18004</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>5</td>
<td>B18005</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>6</td>
<td>B18006</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>7</td>
<td>B18007</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>8</td>
<td>B18008</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>9</td>
<td>B18009</td>
<td>Basic Theory of Internet of Things and the Innovation of Key Technology Disciplines Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>10</td>
<td>B18010</td>
<td>Environmentally Friendly Energy Development and Regulation Discipline Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>11</td>
<td>B18011</td>
<td>Environmentally Friendly Energy Development and Regulation Discipline Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>12</td>
<td>B18012</td>
<td>Environmentally Friendly Energy Development and Regulation Discipline Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>13</td>
<td>B18013</td>
<td>Environmentally Friendly Energy Development and Regulation Discipline Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>14</td>
<td>B18014</td>
<td>Environmentally Friendly Energy Development and Regulation Discipline Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>15</td>
<td>B18015</td>
<td>Environmentally Friendly Energy Development and Regulation Discipline Innovation and Enlightenment Base</td>
<td>Beijing University of Posts and Telecommunications</td>
<td>Ma Huadong (马华东)</td>
</tr>
<tr>
<td>No.</td>
<td>Code</td>
<td>Title</td>
<td>Institution</td>
<td>Name</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>16</td>
<td>B18016</td>
<td>Ship Dynamics Innovation and Enlightenment Base</td>
<td>Harbin Engineering University (哈尔滨工程大学)</td>
<td>Li Wanyou (李玩幽)</td>
</tr>
<tr>
<td>17</td>
<td>B18017</td>
<td>Space Environment and Material Role Discipline Innovation and Enlightenment Base</td>
<td>Harbin Institute of Technology (哈尔滨工业大学)</td>
<td>Guo Bin (郭斌)</td>
</tr>
<tr>
<td>18</td>
<td>B18018</td>
<td>Clean Energy and New Materials Technology Discipline Innovation and Enlightenment Base</td>
<td>Hefei University of Technology (合肥工业大学)</td>
<td>Wu Yucheng (吴玉程)</td>
</tr>
<tr>
<td>19</td>
<td>B18019</td>
<td>Major Hydropower Project Multi-Field Coupling Mechanics Discipline Innovation and Enlightenment Base</td>
<td>Hohai University (河海大学)</td>
<td>Xu Weiya (徐卫亚)</td>
</tr>
<tr>
<td>20</td>
<td>B18020</td>
<td>High-Performance Computing Discipline Innovation and Enlightenment Base (高效能计算学科创新引智基地)</td>
<td>Hunan University (湖南大学)</td>
<td>Li Kenli (李肯立)</td>
</tr>
<tr>
<td>21</td>
<td>B18021</td>
<td>China Green Power Development Research Discipline Innovation and Enlightenment Base (中国绿色电力发展研究学科创新引智基地)</td>
<td>North China Electric Power University (华北电力大学)</td>
<td>Niu Dongxiao (牛东晓)</td>
</tr>
<tr>
<td>22</td>
<td>B18022</td>
<td>High-Efficiency “Intelligence” of Microbial Drugs Discipline Innovation and Enlightenment Base (微生物药物的高效“智”造学科创新引智基地)</td>
<td>East China University of Science and Technology (华东理工大学)</td>
<td>Zhang Lixin (张立新)</td>
</tr>
<tr>
<td>23</td>
<td>B18023</td>
<td>Soft Matter Science and Technology Discipline Innovation and Enlightenment Base (软物质科学与技术学科创新引智基地)</td>
<td>South China University of Technology (华南理工大学)</td>
<td>Cheng Zhengdi (程正迪)</td>
</tr>
<tr>
<td>24</td>
<td>B18024</td>
<td>Computational Intelligence and Intelligent Control Discipline Innovation and Enlightenment Base (计算智能与智能控制学科创新引智基地)</td>
<td>Huazhong University of Science and Technology (华中科技大学)</td>
<td>Ceng Zhigang (曾志刚)</td>
</tr>
<tr>
<td>25</td>
<td>B18025</td>
<td>Micro-Nano Information Materials and Devices Discipline Innovation and Enlightenment Base (微纳信息材料与器件学科创新引智基地)</td>
<td>Jilin University (吉林大学)</td>
<td>Lu Geyu (卢革宇)</td>
</tr>
<tr>
<td>26</td>
<td>B18026</td>
<td>Population Mobility and Labor Economics Discipline Innovation and Enlightenment Base (人口流动与劳动经济学学科创新引智基地)</td>
<td>Jinan University (暨南大学)</td>
<td>Feng Shuaizhang (冯帅章)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>27</td>
<td>B18027</td>
<td>Individual Experience Design Frontier Method and Technology Discipline Innovation and Enlightenment Base (体验设计前沿方法与技术学科创新引智基地)</td>
<td>Jiangnan University (江南大学)</td>
<td>Zhang Linghao (张凌浩)</td>
</tr>
<tr>
<td>28</td>
<td>B18028</td>
<td>Intractable Material Additive Manufacturing Technology and Equipment Discipline Innovation and Enlightenment Base (难成形材料增材制造技术与装备学科创新引智基地)</td>
<td>Nanjing University of Technology (南京理工大学)</td>
<td>Liao Wenhe (廖文和)</td>
</tr>
<tr>
<td>29</td>
<td>B18029</td>
<td>Characteristics Horticultural Crop Breeding and Quality Control Research Discipline Innovation and Enlightenment Base (特色园艺作物育种与品质调控研究学科创新引智基地)</td>
<td>Nanjing Agricultural University (南京农业大学)</td>
<td>Chen Fayang (陈发榜)</td>
</tr>
<tr>
<td>30</td>
<td>B18030</td>
<td>Inorganic Solid Materials and Energy Chemistry Discipline Innovation and Enlightenment Base (无机固体材料与能源化学学科创新引智基地)</td>
<td>Nankai University (南开大学)</td>
<td>Bo Xianhe (卜显和)</td>
</tr>
<tr>
<td>31</td>
<td>B18031</td>
<td>Ecological River Dynamics Discipline Innovation and Enlightenment Base (生态河流动力学学科创新引智基地)</td>
<td>Tsinghua University (清华大学)</td>
<td>Fang Hongwei (方红卫)</td>
</tr>
<tr>
<td>32</td>
<td>B18032</td>
<td>Chan’an and Silk Road Cultural Communication Discipline Innovation and Enlightenment Base (长安与丝路文化传播学科创新引智基地)</td>
<td>Shaanxi Normal University (陕西师范大学)</td>
<td>Zhang Xinke (张新科)</td>
</tr>
<tr>
<td>33</td>
<td>B18033</td>
<td>Accounting Reform and Development Discipline Innovation and Enlightenment Base (会计改革与发展学科创新引智基地)</td>
<td>Shanghai University of Finance and Economics (上海财经大学)</td>
<td>Li Zengquan (李增泉)</td>
</tr>
<tr>
<td>34</td>
<td>B18034</td>
<td>Mental Health and Brain Science and Technology Discipline Innovation and Enlightenment Base (精神健康与脑科学技术学科创新引智基地)</td>
<td>Shanghai Jiaotong University (上海交通大学)</td>
<td>He Lin (贺林)</td>
</tr>
<tr>
<td>B18035</td>
<td>Targeted Drug and Drug Delivery System Discipline Innovation and Enlightenment Base (靶向药物与释药系统学科创新引智基地)</td>
<td>Sichuan University (四川大学)</td>
<td>Huang Yuan (黄园)</td>
<td></td>
</tr>
<tr>
<td>B18036</td>
<td>Integrated Energy and Power System Discipline Innovation and Enlightenment Base (综合能源电力系统学科创新引智基地)</td>
<td>Tianjin University (天津大学)</td>
<td>Wang Chengshan (王成山)</td>
<td></td>
</tr>
<tr>
<td>B18037</td>
<td>Evolution Mechanism and Adaptation Countermeasures of Hydrology and Water Resources System under Changing Environments Discipline Innovation and Enlightenment Base (变化环境下水文水资源系统演变机理及适应对策学科创新引智基地)</td>
<td>Wuhan University (武汉大学)</td>
<td>Xiong Lihua (熊立华)</td>
<td></td>
</tr>
<tr>
<td>B18038</td>
<td>Environmentally Friendly Building Materials Discipline Innovation and Enlightenment Base (环境友好建筑材料学科创新引智基地)</td>
<td>Wuhan University of Technology (武汉理工大学)</td>
<td>Zhao Xiujian (赵修健)</td>
<td></td>
</tr>
<tr>
<td>B18039</td>
<td>Radar Cognitive Detection Imaging Recognition Discipline Innovation and Enlightenment Base (雷达认知探测成像识别学科创新引智基地)</td>
<td>Xidian University of Electronic Technology (西安电子科技大学)</td>
<td>Liu Hongwei (刘宏伟)</td>
<td></td>
</tr>
<tr>
<td>B18040</td>
<td>Intelligent Aircraft Fluid Structure Coupling Mechanics and Bionics Technology Discipline Innovation and Enlightenment Base (智能飞行器流固耦合力学与仿生技术学科创新引智基地)</td>
<td>Xi’an Jiaotong University (西安交通大学)</td>
<td>Shen Shengping (申胜平)</td>
<td></td>
</tr>
<tr>
<td>B18041</td>
<td>Ocean Information Perception Discipline Innovation and Enlightenment Base (海洋信息感知学科创新引智基地)</td>
<td>Northwestern Polytechnical University (西北工业大学)</td>
<td>Yang Yixin (杨益新)</td>
<td></td>
</tr>
<tr>
<td>B18042</td>
<td>Crop Disease Resistance Breeding and Genetic Improvement Innovation and Enlightenment Base (作物抗病育种与遗传改良学科创新引智基地)</td>
<td>Northwestern Rural Science and Technology University (西北农村科技大学)</td>
<td>Dan Weixing (单卫星)</td>
<td></td>
</tr>
<tr>
<td>B18043</td>
<td>Financial Security and Development Discipline</td>
<td>Southwestern University of Finance and Economics (西南财经大学)</td>
<td>Yang Dan (杨丹)</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Code</td>
<td>Title</td>
<td>Institution</td>
<td>Contact Person</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>--</td>
<td>---------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>44</td>
<td>B18044</td>
<td>Citrus Pests and Diseases Continuous Control Basic Research Innovation and Enlightenment Base (柑桔主要病虫害持续控制基础研究学科创新引智基地)</td>
<td>Southwest University (西南大学)</td>
<td>Wang Jinjun (王进军)</td>
</tr>
<tr>
<td>45</td>
<td>B18045</td>
<td>Optical Information Transmission Processing and Sensing Application Discipline Innovation and Enlightenment Base (光信息传输处理与传感应用学科创新引智基地)</td>
<td>Southwest Jiaotong University (西南交通大学)</td>
<td>Yan Lianshan (闫连山)</td>
</tr>
<tr>
<td>46</td>
<td>B18046</td>
<td>Western Geological Hazards and Geological Engineering Discipline Innovation and Enlightenment Base (西部地质灾害与地质工程学科创新引智基地)</td>
<td>Chang’an University (长安大学)</td>
<td>Fan Wen (范文)</td>
</tr>
<tr>
<td>47</td>
<td>B18047</td>
<td>Geotechnical Engineering Long-Term Service Performance and Regulation Discipline Innovation and Enlightenment Base (岩土工程长期服役性能及调控学科创新引智基地)</td>
<td>Zhejiang University (浙江大学)</td>
<td>Chen Yunmin (陈云敏)</td>
</tr>
<tr>
<td>48</td>
<td>B18048</td>
<td>Magma Origins and Continental Crust Formation Discipline Innovation and Enlightenment Base (岩浆成因和大陆地壳形成学科创新引智基地)</td>
<td>China University of Geosciences (Beijing) (中国地质大学(北京))</td>
<td>Zhu Dicheng (朱第成)</td>
</tr>
<tr>
<td>49</td>
<td>B18049</td>
<td>Environmental Hydrogeology Discipline Innovation and Enlightenment Base (环境水文地质学科创新引智基地)</td>
<td>China University of Geosciences (Wuhan) (中国地质大学(武汉))</td>
<td>Wang Yanxin (王焰新)</td>
</tr>
<tr>
<td>50</td>
<td>B18050</td>
<td>Marine Biogenomics and Molecular Genetics and Breeding Discipline Innovation and Enlightenment Base (海洋生物基因组学与分子遗传育种学科创新引智基地)</td>
<td>Ocean University of China (中国海洋大学)</td>
<td>Bao Zhenmin (包振民)</td>
</tr>
<tr>
<td>51</td>
<td>B18051</td>
<td>Multi-Scale Dynamics of Complex Chemical Systems Discipline Innovation and Enlightenment Base (复杂化学体系多尺度动力学学科创新引智基地)</td>
<td>University of Science and Technology of China (中国科学技术大学)</td>
<td>Yan Yijing (严以京)</td>
</tr>
<tr>
<td>Page</td>
<td>Code</td>
<td>Content</td>
<td>Institution</td>
<td>Author</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>52</td>
<td>B18052</td>
<td>Carbon Dioxide Capture, Utilization, and Storage Discipline Innovation and Enlightenment Base</td>
<td>China University of Mining and Technology (Beijing) (中国矿业大学（北京）)</td>
<td>Peng Suping (彭苏萍)</td>
</tr>
<tr>
<td>53</td>
<td>B18053</td>
<td>Food Nutrition and Health Discipline Innovation and Enlightenment Base</td>
<td>China Agricultural University (中国农业大学)</td>
<td>Ren Fazheng (任发政)</td>
</tr>
<tr>
<td>54</td>
<td>B18054</td>
<td>Marine Oil and Gas Production Safety Engineering Discipline Innovation and Enlightenment Base</td>
<td>China University of Petroleum (Beijing) (中国石油大学（北京）)</td>
<td>Zhang Laibin (张来斌)</td>
</tr>
<tr>
<td>55</td>
<td>B18055</td>
<td>Deep/Super-Deep Oil and Gas Geophysical Exploration Discipline Innovation and Enlightenment Base</td>
<td>China University of Petroleum (Huadong) (中国石油大学（华东）)</td>
<td>Fu Lijun (符力耘)</td>
</tr>
<tr>
<td>56</td>
<td>B18056</td>
<td>Natural Active Molecular Discovery and New Drug Innovation and Enlightenment Base</td>
<td>China Pharmaceutical University (中国药科大学)</td>
<td>Kong Lingyi (孔令义)</td>
</tr>
<tr>
<td>57</td>
<td>B18057</td>
<td>Rule of Law and Global Governance Discipline Innovation and Enlightenment Base</td>
<td>China University of Political Science and Law (中国政法大学)</td>
<td>Huang Jin (黄进)</td>
</tr>
<tr>
<td>58</td>
<td>B18058</td>
<td>New Era of Scientific and Technological Revolution and Intellectual Property Discipline Innovation and Enlightenment Base</td>
<td>Central South University of Finance and Economics (中南财经政府大学)</td>
<td>Wu Handong (吴汉东)</td>
</tr>
<tr>
<td>59</td>
<td>B18059</td>
<td>Medical Big Data Analysis Theory and Application Discipline Innovation and Enlightenment Base</td>
<td>Central South University (中南大学)</td>
<td>Zhang Yuxue (张尧学)</td>
</tr>
<tr>
<td>60</td>
<td>B18060</td>
<td>Soil Environmental Pollution Control and Restoration Discipline Innovation and Enlightenment Base</td>
<td>Zhongshan University (中山大学)</td>
<td>Qiu Rongliang (仇荣亮)</td>
</tr>
<tr>
<td></td>
<td>B18061</td>
<td>Drama, Film, Television, and Art Teaching and Creation Discipline Innovation and Enlightenment Base (戏剧影视艺术教学与创作学科创新引智基地)</td>
<td>Central Academy of Drama (中央戏剧学院)</td>
<td>Hao Rong (郝戎)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>B18062</td>
<td>High-Performance Wind Power Facilities and Their Efficient Operation Disciplines Innovation and Enlightenment Base (高性能风电设施及其高效运行学科创新引智基地)</td>
<td>Chongqing University (重庆大学)</td>
<td>Yang Qingshan (杨庆山)</td>
</tr>
</tbody>
</table>

Source: Sina Education (新浪教育).

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3PLA</td>
<td>GSD Technical Reconnaissance Department (Third Department)</td>
</tr>
<tr>
<td>4PLA</td>
<td>ECM and Radar Department (Fourth Department)</td>
</tr>
<tr>
<td>ABAE</td>
<td>Bolivarian Agency for Space Activities (Agencia Bolivariana para Actividades Espaciales)</td>
</tr>
<tr>
<td>APOSOS</td>
<td>Asia-Pacific Ground-Based Optical Space Object Observation System</td>
</tr>
<tr>
<td>APSCO</td>
<td>Asia-Pacific Space Cooperation Organization</td>
</tr>
<tr>
<td>ASAT</td>
<td>Anti-Satellite</td>
</tr>
<tr>
<td>AVIC</td>
<td>Aviation Industry Corporation of China</td>
</tr>
<tr>
<td>BIT</td>
<td>Beijing Institute of Technology</td>
</tr>
<tr>
<td>BITTT</td>
<td>Beijing Institute of Tracking and Telecommunications Technology</td>
</tr>
<tr>
<td>BUAA</td>
<td>Beijing University of Aeronautics and Astronautics</td>
</tr>
<tr>
<td>BX</td>
<td>Banxing</td>
</tr>
<tr>
<td>CALT</td>
<td>China Academy of Launch Technology</td>
</tr>
<tr>
<td>CAS</td>
<td>Chinese Academy of Sciences</td>
</tr>
<tr>
<td>CASC</td>
<td>China Aerospace Science and Technology Corporation</td>
</tr>
<tr>
<td>CASIC</td>
<td>China Aerospace Science and Industry Corporation</td>
</tr>
<tr>
<td>CASIL</td>
<td>China Aerospace International Holdings Limited</td>
</tr>
<tr>
<td>CASSACA</td>
<td>CAS South America Center for Astronomy</td>
</tr>
<tr>
<td>CAST</td>
<td>China Academy of Space Technology</td>
</tr>
<tr>
<td>CBERS</td>
<td>China-Brazil Earth Resources Program</td>
</tr>
<tr>
<td>CCJCA</td>
<td>China-Chile Joint Center for Astronomy</td>
</tr>
<tr>
<td>CCP</td>
<td>Chinese Communist Party</td>
</tr>
<tr>
<td>CETC</td>
<td>China Electronics Technology Group Corporation</td>
</tr>
<tr>
<td>CFIUS</td>
<td>Committee on Foreign Investment in the United States</td>
</tr>
<tr>
<td>CGSTL</td>
<td>Chang Guang Satellite</td>
</tr>
<tr>
<td>CGWIC</td>
<td>China Great Wall Industry Corporation</td>
</tr>
<tr>
<td>CICC</td>
<td>China International Capital Corporation</td>
</tr>
<tr>
<td>CLTC</td>
<td>China Satellite Launch and Tracking Control General</td>
</tr>
<tr>
<td>CMA</td>
<td>China Meteorological Administration</td>
</tr>
<tr>
<td>CMC</td>
<td>Central Military Commission</td>
</tr>
<tr>
<td>CMSP</td>
<td>China Manned Space Program</td>
</tr>
<tr>
<td>CNAGA</td>
<td>China National Administration of GNSS and Applications</td>
</tr>
<tr>
<td>CNSA</td>
<td>China National Space Administration</td>
</tr>
<tr>
<td>CONAE</td>
<td>Comisión Nacional de Actividades Espaciales (Argentina National Commission of Special Activities)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CORS</td>
<td>Continuously Operating Reference Stations</td>
</tr>
<tr>
<td>CPMIEC</td>
<td>China Precision Machinery Import-Export Company</td>
</tr>
<tr>
<td>CRESDA</td>
<td>China Center for Resource Satellite Data and Application</td>
</tr>
<tr>
<td>CSU</td>
<td>Technology and Engineering Center for Space Utilization</td>
</tr>
<tr>
<td>CX</td>
<td>Chuangxin</td>
</tr>
<tr>
<td>DOD</td>
<td>U.S. Department of Defense</td>
</tr>
<tr>
<td>DOJ</td>
<td>U.S. Department of Justice</td>
</tr>
<tr>
<td>DSR</td>
<td>Digital Silk Road</td>
</tr>
<tr>
<td>ECM</td>
<td>Electronic Countermeasures</td>
</tr>
<tr>
<td>EDD</td>
<td>Equipment Development Department</td>
</tr>
<tr>
<td>EO</td>
<td>Electro-optical</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EVA</td>
<td>Extravehicular Activities</td>
</tr>
<tr>
<td>FAU</td>
<td>Florida Atlantic University</td>
</tr>
<tr>
<td>FY</td>
<td>Fengyun</td>
</tr>
<tr>
<td>FYP</td>
<td>Five-Year Plan</td>
</tr>
<tr>
<td>GAD</td>
<td>General Armaments Department</td>
</tr>
<tr>
<td>GEO</td>
<td>Geostationary Earth Orbit</td>
</tr>
<tr>
<td>GEOSS</td>
<td>China Group on Earth Observations</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>GLD</td>
<td>General Logistics Department</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPD</td>
<td>General Political Department</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSD</td>
<td>General Staff Department</td>
</tr>
<tr>
<td>GWU</td>
<td>George Washington University</td>
</tr>
<tr>
<td>HADR</td>
<td>Humanitarian Assistance and Disaster Relief</td>
</tr>
<tr>
<td>HD</td>
<td>High-Definition</td>
</tr>
<tr>
<td>HT</td>
<td>Hangtian-Tsinghua</td>
</tr>
<tr>
<td>HXMT</td>
<td>Hard X-Ray Modulation Telescope</td>
</tr>
<tr>
<td>HY</td>
<td>Haiyang</td>
</tr>
<tr>
<td>IAA</td>
<td>International Academy of Astronautics</td>
</tr>
<tr>
<td>ICBM</td>
<td>Intercontinental Ballistic Missile</td>
</tr>
<tr>
<td>ICG</td>
<td>International Committee on Global Navigation Satellite Systems</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>INPE</td>
<td>Brazil National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais)</td>
</tr>
<tr>
<td>ISR</td>
<td>Intelligence, Surveillance, and Reconnaissance</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>ITAR</td>
<td>International Traffic in Arms Regulations</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>JSD</td>
<td>Joint Staff Department</td>
</tr>
<tr>
<td>KKV</td>
<td>Kinetic Kill Vehicle</td>
</tr>
<tr>
<td>KT</td>
<td>Kaituozhe</td>
</tr>
<tr>
<td>LEO</td>
<td>Low-Earth Orbit</td>
</tr>
<tr>
<td>LM</td>
<td>Long March</td>
</tr>
<tr>
<td>LSU</td>
<td>Key Laboratory of Space Utilization</td>
</tr>
<tr>
<td>MCF</td>
<td>Military-Civil Fusion</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro-Electro-Mechanical System</td>
</tr>
<tr>
<td>MIIT</td>
<td>Ministry of Industry and Information Technology</td>
</tr>
<tr>
<td>MOE</td>
<td>Ministry of Education</td>
</tr>
<tr>
<td>MOFA</td>
<td>Ministry of Foreign Affairs</td>
</tr>
<tr>
<td>MOST</td>
<td>Ministry of Science and Technology</td>
</tr>
<tr>
<td>MUCD</td>
<td>Military Unit Cover Designator</td>
</tr>
<tr>
<td>NAOC</td>
<td>National Astronomical Observatory of China</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NOSS</td>
<td>Naval Ocean Surveillance System</td>
</tr>
<tr>
<td>NSC</td>
<td>National Space Council</td>
</tr>
<tr>
<td>NSSC</td>
<td>National Space Science Center</td>
</tr>
<tr>
<td>NUAA</td>
<td>Nanjing University of Aeronautics and Astronautics</td>
</tr>
<tr>
<td>NWPU</td>
<td>Northwestern Polytechnic University</td>
</tr>
<tr>
<td>OBOR</td>
<td>One Belt, One Road</td>
</tr>
<tr>
<td>OSTP</td>
<td>Office of Science and Technology Policy</td>
</tr>
<tr>
<td>OTH</td>
<td>Over-the-horizon</td>
</tr>
<tr>
<td>PIE</td>
<td>Pixel Information Expert</td>
</tr>
<tr>
<td>PLA</td>
<td>People’s Liberation Army</td>
</tr>
<tr>
<td>PLAA</td>
<td>PLA Army</td>
</tr>
<tr>
<td>PLAAF</td>
<td>PLA Air Force</td>
</tr>
<tr>
<td>PLAN</td>
<td>PLA Navy</td>
</tr>
<tr>
<td>PLARF</td>
<td>People’s Liberation Army Rocket Force</td>
</tr>
<tr>
<td>PLASSF</td>
<td>People’s Liberation Army Strategic Support Force</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PNT</td>
<td>Positioning, Navigating, and Timing</td>
</tr>
<tr>
<td>PRC</td>
<td>People’s Republic of China</td>
</tr>
<tr>
<td>QUESS</td>
<td>Quantum Experiments at Space Scale</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RD&A</td>
<td>Research, Development, and Acquisition</td>
</tr>
<tr>
<td>RMB</td>
<td>Renminbi</td>
</tr>
<tr>
<td>S&T</td>
<td>Science and Technology</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SASAC</td>
<td>State-owned Assets Supervision and Administration Commission</td>
</tr>
<tr>
<td>SAST</td>
<td>Shanghai Academy of Space Technology</td>
</tr>
<tr>
<td>SASTIND</td>
<td>State Administration for Science, Technology, and Industry for National Defense</td>
</tr>
<tr>
<td>SATCOM</td>
<td>Satellite Communication</td>
</tr>
<tr>
<td>SCASST</td>
<td>Sichuan Academy of Safety Science and Technology</td>
</tr>
<tr>
<td>SIIA</td>
<td>State-Industry Innovation Alliances</td>
</tr>
<tr>
<td>SOE</td>
<td>State-Owned Enterprise</td>
</tr>
<tr>
<td>SSA</td>
<td>Space Situational Awareness</td>
</tr>
<tr>
<td>SSC</td>
<td>Swedish Space Corporation</td>
</tr>
<tr>
<td>SSO</td>
<td>Sun-Synchronous Orbit</td>
</tr>
<tr>
<td>SSTL</td>
<td>Surrey Satellite Technology, Limited.</td>
</tr>
<tr>
<td>SUPARCO</td>
<td>Pakistan Space and Upper Atmosphere Research Commission</td>
</tr>
<tr>
<td>SY</td>
<td>Shiyan</td>
</tr>
<tr>
<td>TC</td>
<td>Theater Command</td>
</tr>
<tr>
<td>TGI</td>
<td>Triumph Group, Inc.</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>UFWD</td>
<td>United Front Work Department</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UMD</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNOOSA</td>
<td>United Nations Office for Outer Space Affairs</td>
</tr>
<tr>
<td>VLBI</td>
<td>Very-long-baseline interferometry</td>
</tr>
</tbody>
</table>